Skip to main content

Advertisement

Log in

Inulin-Based Tablet in Capsule Device for Variable Multipulse Delivery of Aceclofenac: Optimization and In Vivo Roentgenography

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the study was to develop single-unit tablet in capsule system of aceclofenac for the treatment of late night pain and morning stiffness associated with rheumatoid arthritis. The system was conceptualized as a three-component design (1) a hard gelatin enteric-coated capsule (for carrying two pulses), (2) first-pulse granules (for rapid release in intestine), and (2) second-pulse matrix tablet (for slow release in colon). An appropriate integration of pH-sensitive (Eudragit S100) and bacteria-responsive (inulin) functions, on the basis of 32 factorial design, led to formulation of TICS 1–9 that were screened for in vitro release. TICS 2 with biphasic drug release of 98.64% from first-pulse granules in simulated intestinal fluid (12 h) and 97.82% from second-pulse matrix tablet in simulated colonic fluid (24 h) was the optimized formulation that exhibited Fickian diffusion of drug (n = 0.363). In vivo fluoroscopy in rats traced the intact tablet to colon in 7.5 h that got eroded at the tenth hour. This demonstrated the colon-specific delivery of the matrix tablet affirming the potential of the system to obviate the need for two-time administration of drug at odd hours. The experimental design was validated by extra design check point, and diffuse reflectance spectroscopy and DSC revealed absence of chemical interaction between the formulation excipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Zhu Z, Zheng L. Development and mathematical simulation of theophylline pulsatile release tablets. Drug Dev Ind Pharm. 2005;31:1009–17.

    Article  CAS  PubMed  Google Scholar 

  2. Smolenska Z, Kaznowska Z, Zarowny D, Simmonds HA, Smolenski RT. Effect of methotrexate on blood purine and pyrimidine levels in patients with rheumatoid arthritis. Rheumatology (Oxford). 1999;38:997–1002.

    Article  CAS  Google Scholar 

  3. Sharma P, Pathak K. Are biological targets the final goal for rheumatoid arthritis therapy? Expert Opin Biol Targets. 2012;12(12):1611–22.

    Article  CAS  Google Scholar 

  4. Saraf S. http://www.pharmainfo.net/reviews/aceclofenac-potent-non-steroidal-anti-inflammatory-drug (2012). Accessed on 18th Dec 2011.

  5. Neagu C, Bahrim G. Inulinases—versatile tool for biotechnology. Innov Rom Food Biotechnol. 2011;9:1–11.

    CAS  Google Scholar 

  6. Akhgari A, Afrasiabi GH, Sadeghi F. Combination of inulin and time dependent polymethacrylates as a coating system to achieve colonic delivery of indomethacin. DARU J Pharm Sci. 2009;17:199–209.

    CAS  Google Scholar 

  7. Barclay T, Milena GM, Cooper P, Petrovsky N. Inulin—versatile polysaccharide with multiple pharmaceutical and food chemical uses. J Excipients Food Chem. 2010;1(3):27–55.

    CAS  Google Scholar 

  8. Aulton ME. Powder flow in pharmaceutics—the science of dosage form design. London: Churchill Livingstone; 2002. p. 114–6.

    Google Scholar 

  9. Ministry of Health and Family Welfare. Indian pharmacopoeia. Ghaziabad: The Indian Pharmacopoeial Commission; 2007. p. 1648–50.

    Google Scholar 

  10. United States Pharmacopoeia 27/National Formulary 24. Rockville, MD: US Pharmacopoeia Convention, Inc; 2000. pp. 2524–5.

  11. Gupta VK, Beckert TE, Deusch NJ, Harinaraon M, Price JC. A novel pH and time based multi potential colonic drug delivery system. Int J Pharm. 2001;213:83–91.

    Article  CAS  PubMed  Google Scholar 

  12. Gao C, Huang J, Jiao Y, Shan L, Liu Y, Li Y, et al. In vitro release and in vivo absorption in beagle dogs of meloxicam from Eudragit FS30D coated pellets. Int J Pharm. 2006;322:104–12.

    Article  CAS  PubMed  Google Scholar 

  13. Kshirsagar SJ, Bhalekar MR, Umap RR. In vitro in vivo comparison of two pH sensitive eudragit polymers for colon specific drug delivery. J Pharm Sci Res. 2009;1:61–70.

    CAS  Google Scholar 

  14. Bussemer T, Peppas NA, Bodmeier R. Time-dependent mechanical properties of polymeric coatings used in rupturable pulsatile release dosage forms. Drug Dev Ind Pharm. 2003;29:623–30.

    Article  CAS  PubMed  Google Scholar 

  15. Shivkumar HN, Sarasiji S, Desai BG. Design and evaluation of pH sensitive multiparticulate system for choronotherapeutic delivery of diltiazem hydrochloride. Ind J Pharm Sci. 2006;68(6):781–7.

    Article  Google Scholar 

  16. Mohamad A, Dashevsky A. In vitro and in vivo performance of a multiparticulate pulsatile drug delivery system. Drug Dev Ind Pharm. 2007;33:113–9.

    Article  CAS  PubMed  Google Scholar 

  17. Koteshwara KB, Thoppil SC, Naha A. Design and development of multiparticulate drug delivery of metronidazole for targeted delivery to colon. Int J Pharm. 2011;3:3580–9.

    CAS  Google Scholar 

  18. Shah N, Patel M, Shah T, Amin A. Design, development and optimization of colon targeted drug delivery system for Crohn’s disease. J Pharm Educ Res. 2011;2:42–50.

    CAS  Google Scholar 

  19. Meghal AK, Chaudari PS, Mathur VB. Formulation and evaluation of enteric coated HPMC capsule of diclofenac sodium. Res J Pharm Biol Chem Sci. 2011;2:790–8.

    CAS  Google Scholar 

  20. Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA. Pharmaceutical significance of cellulose: a review. Express Polym Lett. 2008;2:758–78.

    Article  CAS  Google Scholar 

  21. Tukaram BN, Rajagopalan IV, Sharatchandra PSI. The effects of lactose, microcrystalline cellulose and dicalcium phosphate on swelling and erosion ofcompressed HPMC matrix tablets: texture analyzer. Iran J Pharm Res. 2010;9(4):349–58.

    CAS  Google Scholar 

  22. Chambin O, Champion D, Debray C, Rochat-Gonthier MH, Le MM, Pourcelot Y. Effects of different cellulose derivatives on drug release mechanism at a preformulation stage. J Control Release. 2004;95:101–8.

    Article  CAS  PubMed  Google Scholar 

  23. Coben LJ, Lieberman HA, Lachman L, Lieberman HA, Kanig JL. The theory and practice of industrial pharmacy. Mumbai: Varghese; 1991. p. 241–50.

    Google Scholar 

  24. Mohsen A, Khoweysa OM, Shoukri RA. Optimization of aceclofenac once daily matrix tablets: in vitro and in vivo studies. J Pharm Res Opin. 2011;2:12–22.

    Google Scholar 

  25. Ciolacu D, Ciolacu F, Popa VI. Amorphous cellulose—structure and characterization. Cellul Chem Technol. 2011;45(1–2):13–21.

    CAS  Google Scholar 

  26. Azarmi S, Farid J, Nokhodchi A, Bahari-Saravi SM, Valizadeh H. Thermal treating as a tool for sustained release of indomethacin from Eudragit RS and RL matrices. Int J Pharm. 2002;246:171–7.

    Article  CAS  PubMed  Google Scholar 

  27. Eissens AC, Bolhuis GK, Hinrichs WLJ, Frijlink HW. Inulin as filler—binder for tablets prepared by direct compaction. Eur J Pharm Sci. 2002;15:31–8.

    Article  CAS  PubMed  Google Scholar 

  28. Srivastava R, Kumar D, Pathak K. Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon targeted matrix tablet. Int J Pharm. 2012;427:153–62.

    Article  CAS  PubMed  Google Scholar 

  29. Vats A, Pathak K. Tabletted guar gum microspheres of piroxicam for targeted adjuvant therapy for colonic adenocarcinomas. Ther Deliv. 2012;3(11):1281–95.

    Article  CAS  PubMed  Google Scholar 

  30. Roberfroid M. Introducing inulin type fructans. Br J Nutr. 2005;93 Suppl 1:S13–25.

    Article  CAS  PubMed  Google Scholar 

  31. Yasuda K, Maiorano R, Welch RM, Miller DD, Lei XG. Ceacum is major degradation site of ingested inulin in young pigs. J Nutr. 2007;137(11):2399–404.

    CAS  PubMed  Google Scholar 

  32. Liberman HA, Lachman L, Schwartz JB. Pharmaceutical dosage forms; tablets (2). New York: Mercel Dekker; 1989. p. 210.

    Google Scholar 

  33. Kumar R, Patil SR, Patil MB, Paschapur MS, Mahalaxami R. Design and characterization of aceclofenac mouth dissolving tablets by effervescent formulation approach. Der Pharmacia Lettre. 2010;2:220–36.

    CAS  Google Scholar 

  34. Qureshi J, Ahuja A, Baboota S, Chutani K, Jain S, Ali J. Development and evaluation of a time-specific pulsatile-release tablet of aceclofenac: a solution for morning pain in rheumatoid arthritis. Methods Find Exp Clin Pharmacol. 2009;31(1):15–23.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Ranbaxy Research Laboratory, Gurgaon, India for providing aceclofenac as gift sample and to All India Council for Technical Education for providing final assistance to carry out research work. The authors are highly indebted to Prof Satish Kumar Garg, Dean, Pt. Deen Dayal Upadhayaya Veterinary University, Mathura, India for extending the facilities for in vivo roentgenography study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamla Pathak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, P., Pathak, K. Inulin-Based Tablet in Capsule Device for Variable Multipulse Delivery of Aceclofenac: Optimization and In Vivo Roentgenography. AAPS PharmSciTech 14, 736–747 (2013). https://doi.org/10.1208/s12249-013-9959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9959-8

KEY WORDS

Navigation