Skip to main content
Log in

Formulation and In Vitro Evaluation of Salbutamol Sulphate In Situ Gelling Nasal Inserts

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to formulate salbutamol sulfate (SS), a model drug, as mucoadhesive in situ gelling inserts having a high potential as nasal drug delivery system bypassing the first-pass metabolism. In situ gelling inserts, each containing 1.4% SS and 2% gel-forming polymer, hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Na), sodium alginate (AL), and chitosan (CH) were prepared. The inserts were investigated for their different physicochemical properties. The weight of inserts was 16–27 mg, drug content was 3.9–4.2 mg, thickness ranged between 15 and 28 μm and surface pH was 5–7. Cumulative drug released from the inserts exhibited extended release for more than 10 h following the decreasing order: CH > AL > CMC Na > HPMC. The drug release from CMC Na and AL inserts followed zero-order kinetics while HPMC and CH inserts exhibited non-Fickian diffusion mechanism. The inserts exhibited different water uptake (7–23%) with the smallest values for CH. Differential scanning calorimetry study pointed out possible interaction of SS and oppositely charged anionic polymers (CMC Na and AL). The mucoadhesive in situ gelling inserts exhibited satisfactory mucoadhesive and extended drug release characteristics. The inserts could be used for nasal delivery of SS over about 12 h; bypassing the hepatic first-pass metabolism without potential irritation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Werner U. In situ gelling nasal inserts for prolonged drug delivery. Berlin: Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin; 2003.

    Google Scholar 

  2. Thapa P, Baillie AJ, Stevens HN. Lyophilization of unit dose pharmaceutical dosage forms. Drug Dev Ind Pharm. 2003;29:595–602.

    Article  PubMed  CAS  Google Scholar 

  3. Bertram U, Bernard MC, Haensler J, Maincent P, Bodmeier R. In situ gelling nasal inserts for influenza vaccine delivery. Drug Dev Ind Pharm. 2010;36:581–93.

    Article  PubMed  CAS  Google Scholar 

  4. McInnes FJ, Thapa P, Baillie AJ, Welling PG, Watson DG, Gibson I, et al. In vivo evaluation of nicotine lyophilised nasal insert in sheep. Int J Pharm. 2005;304:72–82.

    Article  PubMed  CAS  Google Scholar 

  5. Garmise RJ, Mar K, Crowder TM, Hwang CR, Ferriter M, Huang J, et al. Formulation of a dry powder influenza vaccine for nasal delivery. AAPS PharmSciTech. 2006;7:E19.

    Article  PubMed  Google Scholar 

  6. Garmise RJ, Staats HF, Hickey AJ. Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS PharmSciTech. 2007;8:E81.

    Article  PubMed  Google Scholar 

  7. D’Souza R, Mutalik S, Venkatesh M, Vidyasagar S, Udupa N. Insulin gel as an alternate to parenteral insulin: formulation, preclinical, and clinical studies. AAPS PharmSciTech. 2005;6:E184–9.

    Article  PubMed  Google Scholar 

  8. Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR. Formulation, optimization and evaluation of spray-dried mucoadhesive microspheres as intranasal carriers for Valsartan. J Microencapsul. 2012;29:103–14.

    Article  PubMed  CAS  Google Scholar 

  9. Bertram U, Bodmeier R. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur J Pharm Sci. 2006;27:62–71.

    Article  PubMed  CAS  Google Scholar 

  10. McInnes FJ, O’Mahony B, Lindsay B, Band J, Wilson CG, Hodges LA, et al. Nasal residence of insulin containing lyophilised nasal insert formulations, using gamma scintigraphy. Eur J Pharm Sci. 2007;31:25–31.

    Article  PubMed  CAS  Google Scholar 

  11. Cho HJ, Balakrishnan P, Shim WS, Chung SJ, Shim CK, Kim DD. Characterization and in vitro evaluation of freeze-dried microparticles composed of granisetron–cyclodextrin complex and carboxymethylcellulose for intranasal delivery. Int J Pharm. 2010;400:59–65.

    Article  PubMed  CAS  Google Scholar 

  12. Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: the next generation. J Pharm Sci. 2000;89:850–66.

    Article  PubMed  CAS  Google Scholar 

  13. Tafaghodi M, Rastegar S. Preparation and in vivo study of dry powder microspheres for nasal immunization. J Drug Target. 2010;18:235–42.

    Article  PubMed  CAS  Google Scholar 

  14. Patil SB, Sawant KK. Chitosan microspheres as a delivery system for nasal insufflation. Colloids Surf B: Biointerfaces. 2011;84:384–9.

    Article  CAS  Google Scholar 

  15. Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects—an update. J Pharm Pharmacol. 2001;53:1047–67.

    Article  PubMed  CAS  Google Scholar 

  16. Cerchiara T, Luppi B, Bigucci F, Zecchi V. Chitosan salts as nasal sustained delivery systems for peptidic drugs. J Pharm Pharmacol. 2003;55:1623–7.

    Article  PubMed  CAS  Google Scholar 

  17. Nand KG, Priti T, Vikas S, Vinod KD. Development and characterization of chitosan coated poly-(ε-caprolactone) nanoparticulate system for effective immunization against influenza. Vaccine. 2011;29:9026–37.

    Article  Google Scholar 

  18. Patil S, Babbar A, Mathur R, Mishra A, Sawant K. Mucoadhesive chitosan microspheres of carvedilol for nasal administration. J Drug Target. 2010;8:321–31.

    Article  Google Scholar 

  19. Dyer AM, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, et al. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res. 2002;19:998–1008.

    Article  PubMed  CAS  Google Scholar 

  20. Morgan DJ, Paull JD, Richmond BH, Wilson-Evered E, Ziccone SP. Pharmacokinetics of intravenous and oral salbutamol and its sulphate conjugate. Br J Clin Pharmacol. 1986;22:587–93.

    Article  PubMed  CAS  Google Scholar 

  21. Martinac A, Filipovic-Grcic J, Voinovich D, Perissutti B, Franceschinis E. Development and bioadhesive properties of chitosan-ethylcellulose microspheres for nasal delivery. Int J Pharm. 2005;291:69–77.

    Article  PubMed  CAS  Google Scholar 

  22. Nafee NA, Ismail FA, Boraie NA, Mortada LM. Mucoadhesive buccal patches of miconazole nitrate: in vitro/in vivo performance and effect of ageing. Int J Pharm. 2003;264:1–14.

    Article  PubMed  CAS  Google Scholar 

  23. Varshosaz J, Sadrai H, Heidari A. Nasal delivery of insulin using bioadhesive chitosan gels. Drug Deliv. 2006;13:31–8.

    Article  PubMed  CAS  Google Scholar 

  24. Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–9.

    Article  PubMed  CAS  Google Scholar 

  25. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  26. Etman MA, Nada AH. Evaluation of simple and ball mill ground mixtures of two NSAIDs with different hydrophilc carriers. Alex J Pharm Sci. 1999;13:135–40.

    CAS  Google Scholar 

  27. Kim KH, Frank MJ, Henderson NL. Application of differential scanning calorimetry to the study of solid drug dispersions. J Pharm Sci. 1985;74:283–9.

    Article  PubMed  CAS  Google Scholar 

  28. Doijad RC, Manvi FV, Malleswara Rao VSN, Patel PS. Buccoadhesive drug delivery system of isosorbide dinitrate: formulation and evaluation. Indian J Pharm Sci. 2006;68:744–8.

    Article  CAS  Google Scholar 

  29. Washington N, Steele RJ, Jackson SJ, Bush D, Mason J, Gill DA, et al. Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm. 2000;198:139–46.

    Article  PubMed  CAS  Google Scholar 

  30. Nappinnai M, Chandanbala R, Balaijirajan R. Formulation and evaluation of nitrendipine buccal films. Indian J Pharm Sci. 2008;70:631–5.

    Article  PubMed  CAS  Google Scholar 

  31. Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev. 1993;11:1–35.

    Article  CAS  Google Scholar 

  32. Perioli L, Ambrogi V, Angelici F, Ricci M, Giovagnoli S, Capuccella M, et al. Development of mucoadhesive patches for buccal administration of ibuprofen. J Control Release. 2004;99:73–82.

    Article  PubMed  CAS  Google Scholar 

  33. Lehr C-M, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992;78:43–8.

    Article  CAS  Google Scholar 

  34. Aksungur P, Sungur A, Unal S, Iskit AB, Squier CA, Senel S. Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. J Control Release. 2004;98:269–79.

    Article  PubMed  CAS  Google Scholar 

  35. Nafee NA, Boraie MA, Ismail FA, Mortada LM. Design and characterization of mucoadhesive buccal patches containing cetylpyridinium chloride. Acta Pharm. 2003;53:199–212.

    PubMed  CAS  Google Scholar 

  36. Gu JM, Robinson JR, Leung SH. Binding of acrylic polymers to mucin/epithelial surfaces: structure–property relationships. Crit Rev Ther Drug Carrier Syst. 1988;5:21–67.

    PubMed  CAS  Google Scholar 

  37. Madsen F, Eberth K, Smart JD. A rheological examination of the mucoadhesive/mucus interaction: the effect of mucoadhesive type and concentration. J Control Release. 1998;50:167–78.

    Article  PubMed  CAS  Google Scholar 

  38. Bertram U, Bodmeier R. Parameters affecting the drug release from in situ gelling nasal inserts. Eur J Pharm Biopharm. 2006;63:310–9.

    Article  PubMed  CAS  Google Scholar 

  39. Rodriguez CF, Bruneau N, Barra J, Alfonso D, Doelker E. Hydrophilic cellulose derivatives as drug delivery carriers: influence of the substitution type on the properties of compressed matrix tablets. In: Wise DL, editor. Handbook of pharmaceutical controlled release technology. New York: Marcell Dekker; 2000. p. 1–30.

    Google Scholar 

  40. Moffat AC (2004) Salbutamol sulfate,Clarke’s analysis of drug and poisons. In: Galichet LY, editor. London: Pharmaceutical Press.

  41. Vigoreaux V, Ghaly ES. Fickian and relaxational contribution quantification of drug release in a swellable hydrophillic polymer matrix. Drug Dev Ind Pharm. 1994;20:2519–26.

    Article  CAS  Google Scholar 

  42. Mishra DN, Gilhotra RM. Design and characterization of bioadhesive in-situ gelling ocular inserts of gatifloxacin sesquihydrate. DARU. 2008;16:1–8.

    CAS  Google Scholar 

  43. Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985;2:257–75.

    Article  CAS  Google Scholar 

  44. Ritger PL, Peppas NA. A simple equation for description of solute release II Fickian and anomalous from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  45. Rao V, Shyale S. Preparation and evaluation of ocular inserts containing norfloxacin. Turk J Med Sci. 2004;34:239–46.

    CAS  Google Scholar 

  46. Peppas NA, Sahlin JJ. A simple equation for the description of sustained release. III Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.

    Article  CAS  Google Scholar 

  47. Lindner WD, Lippold BC. Drug release from hydrocolloid embeddings with high or low susceptibility to hydrodynamic stress. Pharm Res. 1995;12:1781–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragwa M. Farid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farid, R.M., Etman, M.A., Nada, A.H. et al. Formulation and In Vitro Evaluation of Salbutamol Sulphate In Situ Gelling Nasal Inserts. AAPS PharmSciTech 14, 712–718 (2013). https://doi.org/10.1208/s12249-013-9956-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9956-y

KEY WORDS

Navigation