Skip to main content
Log in

A Review of Polymeric Refabrication Techniques to Modify Polymer Properties for Biomedical and Drug Delivery Applications

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Polymers are extensively used in the pharmaceutical and medical field because of their unique and phenomenal properties that they display. They are capable of demonstrating drug delivery properties that are smart and novel, such properties that are not achievable by employing the conventional excipients. Appropriately, polymeric refabrication remains at the forefront of process technology development in an endeavor to produce more useful pharmaceutical and medical products because of the multitudes of smart properties that can be attained through the alteration of polymers. Small alterations to a polymer by either addition, subtraction, self-reaction, or cross reaction with other entities have the capability of generating polymers with properties that are at the level to enable the creation of novel pharmaceutical and medical products. Properties such as stimuli-responsiveness, site targeting, and chronotherapeutics are no longer figures of imaginations but have become a reality through utilizing processes of polymer refabrication. This article has sought to review the different techniques that have been employed in polymeric refabrication to produce superior products in the pharmaceutical and medical disciplines. Techniques such as grafting, blending, interpenetrating polymers networks, and synthesis of polymer complexes will be viewed from a pharmaceutical and medical perspective along with their synthetic process required to attain these products. In addition to this, each process will be evaluated according to its salient features, impeding features, and the role they play in improving current medical devices and procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. Kaparissedes C, Alexandridou S, Kotti K, Chaitidou S. Recent advances in novel drug delivery systems. J Nanotechnol. 2006; 2.

  2. Pergal MV, Antic VV, Tovilovic G, Nestorov J, Vasiljevic-Radovic, Djonlagic J. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ε-caprolactone)-block-co-poly(dimethylsiloxane)-block-poly(ε-caprolactone). J Biomater Sci Polym Ed. 2012;23:1629–57.

    CAS  Google Scholar 

  3. Pasut G, Veronese FM. Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci. 2007;32:933–61.

    Article  CAS  Google Scholar 

  4. Subhash D, Mandal C, Mandal M. Current status and future prospects of new drug delivery systems. Pharma Times. 2010;42:13–6.

    Google Scholar 

  5. Kim P-H, Kim SW. Polymer-based delivery of glucagon-like peptide-1 for the treatment of diabetes. ISRN Endocrinol. 2012; doi:10.5402/2012/340632.

    PubMed  Google Scholar 

  6. Saito T, Mather BD, Costanzo PJ, Beyer FL, Long TE. Influence of site-specific sulfonation on acrylic graft copolymer morphology. Macromolecules. 2008;41:3503–12.

    Article  CAS  Google Scholar 

  7. Kamal M, Dwivedi A. Photo polymerized interpenetrating polymer network of poly(antimony acrylate) and poly(arsenic acrylate): synthesis and characterization. J Macromol Sci Pure Appl Chem. 2008;45:548–54.

    Article  CAS  Google Scholar 

  8. Sampaio S, Taddei P, Monti P, Buchert J, Freddi G. Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies. J Biotechnol. 2005;116:21–33.

    Article  CAS  PubMed  Google Scholar 

  9. Kaith BS, Jindal R, Jana AK, Maiti M. Characterization and evaluation of methyl methacrylate-acetylated Saccharum spontaneuml L. graft copolymers prepared under microwave. Carbohydr Polym. 2009;78:987–96.

    Article  CAS  Google Scholar 

  10. Qiu Y, Park K. Environmentally-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012; doi:10.1016/j.addr.2012.09.024.

    Google Scholar 

  11. Jenkins DW, Hudson SM. Review of vinyl copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Revolut. 2001;101:3245–74.

    Article  CAS  Google Scholar 

  12. Roach P, Eglin D, Rohde K. Modern biomaterials: a review—bulk properties and implications of surface modifications. J Mater Sci Mater Med. 2007;18:1263–77.

    Article  CAS  PubMed  Google Scholar 

  13. Yan W, Qin S, Guo J, Zhang M, He M, Yu J. Morphology and mechanical properties of acrylonitrile-butadiene-styrene (ABS)/polyamide 6 (PA6) nanocomposites prepared via melt mixing. J Macromol Sci B Phys. 2012;51:70–82. doi:10.1080/00222348.2011.562113.

    Article  CAS  Google Scholar 

  14. Fang Z, Harrats C, Moussaif N, Groeninckx G. Location of a nanoclay at the interface in an immiscible poly(ε-caprolactone)/poly(ethylene oxide) blend and its effect on the compatibility of the components. J Appl Polym Sci. 2007;106:3125–35.

    Article  CAS  Google Scholar 

  15. Kuo S-W, Cheng R-S. DNA-like interactions enhance the miscibility of supramolecular polymer blends. Polymer. 2009;50:177–88.

    Article  CAS  Google Scholar 

  16. Ludwiczak S, Mucha M. Modeling of water sorption isotherms of chitosan blends. Carbohydr Polym. 2010;79:34–9.

    Article  CAS  Google Scholar 

  17. Si M, Araki T, Ade H, Kilcoyne ALD, Fisher R, Sokolov JC, et al. Compatibilizing bulk polymer blends by using organoclays. Macromolecules. 2006;39:4793–801.

    Article  CAS  Google Scholar 

  18. Sperling LH, Mishra V. The current status of interpenetrating polymer networks. Polym Adv Technol. 1996;7:197–208.

    Article  CAS  Google Scholar 

  19. Jayasuriya MM, Hourston DJ. The effect of composition and the level of crosslinking of the poly(methylmethacrylate) phase on the properties of natural rubber-poly(methylmethacrylate semi-2 interpenetrating polymer networks. J Appl Polym Sci. 2012;124:3558–64.

    Article  CAS  Google Scholar 

  20. Myung D, Waters D, Wiseman M, Duhamel P, Noolandi J, Ta CN, et al. Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol. 2008;19:647–57.

    Article  CAS  PubMed  Google Scholar 

  21. Johns J, Nakason C. Novel interpenetrating polymer networks based on natural rubber/poly(vinyl alcohol). Polym Plast Technol Eng. 2012;51:1046–53.

    Article  CAS  Google Scholar 

  22. Kumaki J, Kawauchi T, Okoshi K, Kusanagi H, Yashima E. Supramolecular helical structure of the stereocomplex composed of complementary isotactic and syndiotactic poly(methyl methacrylate)s as revealed by atomic force microscopy. Angew Chem. 2007;119:5444–7.

    Article  Google Scholar 

  23. Tsuji H, Bouapao L. Stereocomplex formation between poly(L-lactic acid) and poly(D-lactic acid) with disproportionately low and high molecular weights from the melt. Polym Int. 2012;61:442–50.

    Article  CAS  Google Scholar 

  24. Kim SH, Park O, Nederberg F, Topuria T, Krupp LE, Kim H, et al. Application of block-copolymers supramolecular assembly for the fabrication of complex TiO2 nanostructures. Small. 2008;4:2162–5.

    Article  CAS  PubMed  Google Scholar 

  25. Wegner D, Yamachika R, Wang Y, Brar VW, Bartlett BM, Long JR, et al. Single-molecule charge transfer and bonding at an organic/inorganic interface: tetracyanoethylene on noble metals. Nano Lett. 2008;8:131–5.

    Article  CAS  PubMed  Google Scholar 

  26. Shaovsky A, Varga I, Makuška R, Claesson PM. Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration. Am Chem Soc. 2009;25:6113–21.

    Google Scholar 

  27. Stein T, Kronik L, Baer R. Reliable prediction of charge transfer excitations in molecular complexes using time-dependant density functional theory. J Am Chem Soc. 2009;131:2818–20.

    Article  CAS  PubMed  Google Scholar 

  28. Khan IM, Ahmad A. Synthesis, spectral investigations, antimicrobial activity and DNA-binding studies of novel charge transfer complex of 1,10-phenanthroline as an electron donor with π-acceptor p-nitrophenol. J Mol Struct. 2010;977:189–96.

    Article  CAS  Google Scholar 

  29. Bhattacharya, Misra BN. Grafting: a versatile means to modify polymers techniques, factors and applications. Programmed Polym Sci. 2007;29:767–814.

    Article  CAS  Google Scholar 

  30. Li M-Z, Li J-H, Shao X-S, Miao J, Wang J-B, Zhang Q-Q, et al. Grafting zwitterionic brush on the surface of PVDF membrane using physisorbed free radical grafting technique. J Membr Sci. 2012;405–406:141–8.

    Article  CAS  Google Scholar 

  31. Kato K, Uchida E, Kang E, Uyama Y, Ikada Y. Polymer surface with graft chains. Programmed Polym Sci. 2002;28:209–59.

    Article  Google Scholar 

  32. McGinty KM, Brittain WJ. Hydrophilic modification of poly(vinyl chloride) film and tubing using physisorbed free radical grafting technique. Polymer. 2008;49:4350–7.

    Article  CAS  Google Scholar 

  33. Siegwart DJ, Oh JK, Matjaszewski K. ATRP in the design of functional materials for biomedical applications. Prog Polym Sci. 2012;37:18–37.

    Article  CAS  PubMed  Google Scholar 

  34. Krivoguz YM, Guliyev AM, Pesetskii SS. Free radical grafting of trans-ethylene-1,2-dicarboxilic acid onto molten ethylene-vinyl acetate copolymer. Appl Polym Sci. 2012; doi:10.1002/app.37703.

    Google Scholar 

  35. Moad G, Rizzardo E, Thang SH. Radical addition–fragmentation chemistry in polymer synthesis. Polymer. 2008;49:1079–131.

    Article  CAS  Google Scholar 

  36. Durmaz YY, Kumbaraci V, Demirel AL, Talinli N, Yagci Y. Graft copolymers by the combination of ATRP and photochemical acylation process by using benzodioxinones. Macromolecules. 2009;42:3743–9.

    Article  CAS  Google Scholar 

  37. Zhang N, Huber S, Schulz A, Luxenhofer R, Jordan R. Cylindrical molecular brushes of poly(2-oxazoline)s from 2-isopropenyl-2-oxazoline. Macromolecules. 2009;42:2215–21.

    Article  CAS  Google Scholar 

  38. Zhao J, Mountrichas G, Zhang G, Pispas S. Thermoresponsive core-shell brush copolymers with poly(propylene oxide)-block-poly(ethylene oxide) side chains via a “grafting from” technique. Macromolecules. 2010;43:1771–7.

    Article  CAS  Google Scholar 

  39. Aoshima S, Kanaoka S. Synthesis of stimuli-responsive polymers by living polymerization: poly(N-isopropylacrylamide) and poly(vinyl ether)s. Adv Polym Sci. 2008;210:169–208.

    Article  CAS  Google Scholar 

  40. Huang L-P, Zhou X-P, Cui W, Xie X-L, Tong S-Y. Maleic anhydride-grafted linear low-density polyethylene with low gel content. Polym Eng Sci. 2009;49:673–9.

    Article  CAS  Google Scholar 

  41. Vicente G, Aguado J, Serrano DP, Sánchez N. HDPE chemical recycling promoted by phenol solvent. J Anal Appl Pyrolysis. 2009;85:366–71.

    Article  CAS  Google Scholar 

  42. Na C-K, Park H-J. Preparation of acrylic acid grafted polypropylene nonwoven fabric by photoinduced graft polymerization with preabsorption of monomer solution. J Appl Polym Sci. 2009;114:387–97.

    Article  CAS  Google Scholar 

  43. Wang X, Colavita PE, Streifer JA, Butler JE, Hamers RJ. Photochemical grafting of alkenes onto carbon surfaces: identifying the roles of electrons and holes. J Phys Chem C. 2010;114:4067–74.

    Article  CAS  Google Scholar 

  44. Aracri E, Fillat A, Colom JF, Gutierrez A, del Rio JC, Martinez AT, et al. Enzymatic grafting of simple phenols on flax and sisal pulp fibres using laccases. Bioresour Technol. 2010;101:8211–6.

    Article  CAS  PubMed  Google Scholar 

  45. Hanefeld U, Gardossi L, Magner E. Understanding enzyme immobilisation. Chem Soc Rev. 2009;38:453–68.

    Article  CAS  PubMed  Google Scholar 

  46. Hossain KMG, Gonzalez MD, Lozano GR, Tzanov T. Multifunctional modification of wool using an enzymatic process in aqueous-organic media. J Biotechnol. 2009;141:58–63.

    Article  CAS  PubMed  Google Scholar 

  47. Lv X, Song W, Ti Y, Qu L, Zhao Z, Zheng H. Gamma radiation-induced grafting of acrylamide and dimethyl diallyl ammonium chloride onto starch. Carbohydr Polym. 2012; doi:10.1016/j.carbpol.2012.10.002.

    Google Scholar 

  48. Qiu J, Wang Z, Li H, Xu L, Peng J, Zhai M, et al. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting. J Hazard Mater. 2009;166:270–6.

    Article  CAS  PubMed  Google Scholar 

  49. Gürsel SA, Gubler L, Gupta B, Scherer GG. Radiation grafted membranes. Adv Polym Sci. 2008;215:157–217.

    Google Scholar 

  50. Goel NK, Rao MS, Kumar V, Bhardwaj YK, Chaudhari CV, Dubey KA, et al. Synthesis of antibacterial cotton fabric by radiation-induced grafting of [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MAETC) onto cotton. Radiat Phys Chem. 2009;78:399–406.

    Article  CAS  Google Scholar 

  51. Liu R, Saunders BR. Thermoresponsive surfaces prepared using adsorption of a cationic graft copolymer: a versatile method for triggered particle capture. J Colloid Interface Sci. 2009;338:40–7.

    Article  PubMed  CAS  Google Scholar 

  52. Zhao J, Mountrichas G, Zhang G, Pispas S. Amphiphilic polystyrene-b-poly(p-hydroxystyrene-g-ethylene oxide block-graft copolymers via a combination of conventional and metal-free anionic polymerization. Macromolecules. 2009;42:8661–8.

    Article  CAS  Google Scholar 

  53. Zhao J, Li J, Feng Y, Yin J. A novel approach to synthesis of functional CPVC and CPE or graft copolymers-in situ chlorination graft. Polym Adv Technol. 2007;18:822–8.

    Article  CAS  Google Scholar 

  54. Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol. 2008;43:401–14.

    Article  CAS  PubMed  Google Scholar 

  55. Scherf U, Gutacker A, Koenen N. All-conjugated block copolymers. Acc Chem Res. 2008;41:1086–97.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J-F, Yang D-Z, Xu F, Zhang Z-P, Yin R-X, Nie J. Electrospun core–shell structure nanofibres from homogenous solution of poly(ethylene oxide)/chitosan. Macromolecules. 2009;42:5278–84.

    Article  CAS  Google Scholar 

  57. Price M, Reiners JJ, Santiago AM, Kessel D. Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy. Photochem Photobiol. 2009;85:1177–81.

    Article  CAS  PubMed  Google Scholar 

  58. Verbeek CJR, Hanipah SH. Grafting Itaconic anhydride onto polyethylene using extrusion. J Appl Polym Sci. 2010;116:3118–26.

    Article  CAS  Google Scholar 

  59. Russell KE. Free radical graft polymerization and copolymerization at higher temperatures. Prog Polym Sci. 2001;27:1007–38.

    Article  Google Scholar 

  60. Thurecht KJ, Gooden PN, Goel S, Tuck C, Licence P, Irvine DJ. Free-radical polymerization in ionic liquids: the case for a protected radical. Macromolecules. 2008;41:2814–20.

    Article  CAS  Google Scholar 

  61. Colavita PE, Sun B, Wang X, Hamers RJ. Influence of surface termination and electronic structure on the photochemical grafting of alkenes to carbon surfaces. J Phys Chem C. 2009;113:1526–35.

    Article  CAS  Google Scholar 

  62. Deng J, Wang L, Liu L, Yang W. Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci. 2009;34:156–93.

    Article  CAS  Google Scholar 

  63. Krekova J, Lacher NA, Svec F. Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies. Anal Chem. 2009;81:2004–12.

    Article  CAS  Google Scholar 

  64. Zhang P, Henthorn DB. Synthesis of PEGylated single wall carbon nanotubes by a photoinitiated graft from polymerization. AICHE J. 2010;56:1610–5.

    CAS  Google Scholar 

  65. Wu G, Xie Y, Ou E, Zhang L, Xiong Y, Xu W. Preparation, characterization, and properties of sodium montmorillonite clay/poly(styrene–butadiene–styrene) containing quaternary ammonium cations and photoinitiator nanocomposites via ultraviolet exposure. J Appl Polym Sci. 2010;118:1675–82.

    CAS  Google Scholar 

  66. Sheldon RA. Enzyme immobilization: the quest for optimum performance. Adv Synth Catal. 2007;349:1289–307.

    Article  CAS  Google Scholar 

  67. Kumar G, Smith PJ, Payne GF. Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions. Biotechnol Bioeng. 1998;63:154–65.

    Article  Google Scholar 

  68. Aljawish A, Chevalot I, Piffaut B, Rondeau-Mouro C, Giradin M, Jasniewski J, et al. Functionalization of chitosan by laccase-catalyzed oxidation of ferulic acid and ethyl ferulate under heterogeneous reaction conditions. Carbohydr Polym. 2012;87:537–44.

    Article  CAS  Google Scholar 

  69. Muller HG, Waldmann H. An enzyme-initiated domino hydroxylation–oxidation-carbo-Diels–Alder reaction cascade. Tetrahedron Lett. 1996;37:3833–6.

    Article  Google Scholar 

  70. Shah B, Chen A. Novel electrochemical approach for the monitoring of biodegradation of phenolic pollutants and determination of enzyme activity. Electrochem Commun. 2012;25:79–82.

    Article  CAS  Google Scholar 

  71. Fatarella E, Ciabatti I, Cortez J. Activation of polymeric materials towards enzymatic postgrafting and cross-linking. Enzyme Microb Technol. 2012;51:252–7.

    Article  CAS  PubMed  Google Scholar 

  72. Sugimoto H, Nakamura S, Ohwada T. Retro-Diels–Alder reaction of 4H-1,2, benzoxazines to generate o-quinone methides: involvement of highly polarized transition states. J Org Chem. 2007;72:10088–95.

    Article  CAS  PubMed  Google Scholar 

  73. Zhao A, Sadik OA. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study. J Agric Food Chem. 2008;56:12081–91.

    Article  CAS  Google Scholar 

  74. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 2007;40:1451–63.

    Article  CAS  Google Scholar 

  75. Li S, Gao K. The study on methyl methacrylate graft-copolymerization composite separator prepared by pre-irradiation method for Li-ion batteries. Surf Coat Technol. 2010;204:2822–8.

    Article  CAS  Google Scholar 

  76. Smith J, Zhang W, Sougrat R, Zhao K, Li R, Cha D, et al. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs. Adv Mater. 2012;24:2441–6.

    Article  CAS  PubMed  Google Scholar 

  77. Zivanovic S, Li J, Davidson PM, Kit K. Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules. 2007;8:1505–10.

    Article  CAS  PubMed  Google Scholar 

  78. Oh KT, Bronich TK, Kabanov VA, Kabanov AV. Block polyelectrolyte networks from poly(acrylic acid) and poly(ethylene oxide): sorption and release of cytochrome C. Biomacromolecules. 2007;8:490–7.

    Article  CAS  PubMed  Google Scholar 

  79. Elias L, Fenouillot F, Majeste JC, Cassagnau P. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer. 2007;48:6029–40.

    Article  CAS  Google Scholar 

  80. Ravati S, Favis BD. Morphological states for a ternary polymer blend demonstrating complete wetting. Polymer 2010;51:3669. doi:10.1016/j.polymer.2010.07.014.

    Google Scholar 

  81. Harvie DJE, Davidson MR, Cooper-White JJ, Rudman M. A parametric study of droplet deformation through a microfluidic contraction: shear thinning liquids. Int J Multiphase Flow. 2007;33:545–56.

    Article  CAS  Google Scholar 

  82. Sperling LH. An overview of interpenetrating networks. In: Salamone JC, editor. 5 polymeric materials encyclopedia. Boca Raton: CRC; 1996.

    Google Scholar 

  83. Jayasuriya MM, Hourston DJ. The effect of composition on the dynamic and mechanical properties of natural rubber–poly(methylmethacrylate) blends. J Appl Polym Sci. 2009;112:3217–24.

    Article  CAS  Google Scholar 

  84. Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A. Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng. 2009;15:1646–53.

    Google Scholar 

  85. Su J, Wall ST, Healy KE, Wildsoet CF. Scleral reinforcement through host tissue integration with biomimetic enzymatically degradable semi-interpenetrating polymer network. Tissue Eng. 2010;16:905–16.

    CAS  Google Scholar 

  86. Suri S, Schmidt CE. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater. 2009;5:2385–97.

    Article  CAS  PubMed  Google Scholar 

  87. Dakhara SL, Anajwala CC. Polyelectrolyte complex: a pharmaceutical review. Syst Rev Pharm. 2010;1:121–7.

    Article  CAS  Google Scholar 

  88. Kim SJ, Yoon SG, Lee KB, Park YD, Kim SI. Electrical sensitivity of a polyelectrolyte complex composed of chitosan/hyaluronic acid. Solid State Ionics. 2003;164:199–204.

    Article  CAS  Google Scholar 

  89. Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB. Reversed chitosan-alginate polyelectrolyte complex for stability improved alpha-amylase: optimization and physicochemical characterization. Eur J Pharm Biopharm. 2007;65:215–32.

    Article  CAS  PubMed  Google Scholar 

  90. Bawa P, Pillay V, Choonara YE, du Toit LC, Ndesendo VMK, Kumar P. A composite polyelectrolyte matrix for controlled oral drug delivery. AAPS PharmSciTech. 2011;12:227–38.

    Article  CAS  PubMed  Google Scholar 

  91. Llanes-Pallas A, Matena M, Jung T, Prato M, Stöhr M, Bonifazi D. Trimodular engineering of linear supramolecular miniatures on Ag(111) surfaces controlled by complementary triple hydrogen bonds. Angew Chem. 2008;120:7840–4.

    Article  Google Scholar 

  92. Sherrington DC, Taskinen KA. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chem Soc Rev. 2001;30:83–93.

    Article  CAS  Google Scholar 

  93. Wilson AJ. Non-covalent polymer assembly using arrays of hydrogen-bonds. Soft Matter. 2007;3:409–25.

    Article  CAS  Google Scholar 

  94. Kitagawa S, Uemura K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem Soc Rev. 2005;34:109–19.

    Article  CAS  PubMed  Google Scholar 

  95. Blight BA, Camara-Campos A, Djurdjevic S, Kaller M, Leigh DA, McMillan FM, et al. AAA-DDD triple hydrogen bond complexes. J Am Chem Soc. 2009;131:14116–22.

    Article  CAS  PubMed  Google Scholar 

  96. Steinke JHG, Dunkin IR, Sherrington DC. A simple carboxylic acid receptor: 2-acrylamido pyridine. TrAC Trends Anal Chem. 1999;18:159–64.

    Article  CAS  Google Scholar 

  97. Castro TG, Araujo CMU, Braga CF, Silvia LS, Pereira AM, Lopes KC, et al. Theoretical calculations of the substituent effect on molecular properties of the R_C ≡ N…H_F hydrogen-bonded complexes with R = NH2, CH3O, CH3, OH, SH, H, Cl, F, CF3, CN and NO2. Vib Spectrosc. 2009;49:133–41.

    Article  CAS  Google Scholar 

  98. van Leeuwen AC, Bos RRM, Grijpma DW. Composite materials based on poly(trimethylene carbonate) and -tricalcium phosphate for orbital floor and wall construction. J Biomed Mater Res B Appl Biomater. 2012;100B:1610–20.

    Article  CAS  Google Scholar 

  99. Baldwin AD, Kiick KL. Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers. 2010;94:128–40.

    Article  CAS  PubMed  Google Scholar 

  100. Humbert P, Mikosinski J, Benchikhi H, Allaert F-A. Efficacy and safety of a gauze pad containing hyaluronic acid in treatment of leg ulcers of venous or mixed origin: a double-blind, randomized, controlled trial. Int Wound J. 2012; doi:10.1111/j.1742-481X.2012.00957.x.

    PubMed  Google Scholar 

  101. Voigt J, Driver VR. Hyaluronic acid derivates and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen. 2012;20:317–31.

    Article  PubMed  Google Scholar 

  102. Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999;7:79–89.

    Article  CAS  PubMed  Google Scholar 

  103. Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. PNAS. 2005;103:2480–7.

    Article  CAS  Google Scholar 

  104. He C, Zhuang X, Tang Z, Tian H, Chen X. Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Adv Healthc Mater. 2012;1:48–78.

    Article  CAS  PubMed  Google Scholar 

  105. York AW, Kirkland SE, McCormick CL. Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliv Rev. 2007;60:1018–36.

    Article  CAS  Google Scholar 

  106. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012; doi:10.1016/j.addr.2012.09.033.

    Google Scholar 

  107. Aguilar MR, Elvira C, Gallardo A, Vazquez B, Roman JS. Smart polymers and their applications as biomaterials. Biomaterials. 2007; 3.

  108. Litinski M, Scheer FAJL, Shea SA. Influence of the circadian system in disease severity. Sleep Med Clin. 2009;4:143–63.

    Article  PubMed  Google Scholar 

  109. Lee TA, Schumock GT, Bartle B, Pickard AS. Mortality risk in patients receiving drug regimens with theophylline for chronic obstructive pulmonary disease. Pharmacotherapy. 2009;29:1039–53.

    Article  CAS  PubMed  Google Scholar 

  110. Vijaya KB, Nagaraj B, Agaiah B, Rambhau D. Design and in vitro evaluation of chrono modulated theophylline tablets. S J Pharm Sci. 2008;1:25–8.

    Google Scholar 

  111. Ross AC, Macrae RJ, Walther M, Stevens HNE. Chronopharmaceutical drug delivery from a pulsatile capsule device based on programmable erosion. J Pharm Pharmacol. 2000;52:903–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillay, V., Seedat, A., Choonara, Y.E. et al. A Review of Polymeric Refabrication Techniques to Modify Polymer Properties for Biomedical and Drug Delivery Applications. AAPS PharmSciTech 14, 692–711 (2013). https://doi.org/10.1208/s12249-013-9955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9955-z

KEY WORDS

Navigation