Skip to main content
Log in

PEGylated Single-Walled Carbon Nanotubes as Nanocarriers for Cyclosporin A Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWCNTs) have attracted the attention of many researchers due to their remarkable physicochemical features and have been found to be a new family of nanovectors for the delivery of therapeutic molecules. The ability of these nanostructures to load large amounts of drug molecules on their outer surface has been considered as the main advantage by many investigators. Here, we report the development of a PEGylated SWCNT-mediated delivery system for cyclosporin A (CsA) as a potent immunosuppressive agent. The available OH group in the CsA structure was first linked to a bi-functional linker (i.e., succinic anhydride) in order to provide a COOH terminal group. CsA succinylation process was optimized by using the modified simplex method. The resulting compound, CsA–CO–(CH2)2–COOH, was then grafted onto the exterior surface of SWCNTs, previously PEGylated with phospholipid–PEG5000–NH2 conjugates, through the formation of an amide bond with the free amine group of PEGylated SWCNTs. Drug loading, stability of the PEGylated SWCNT–CsA complex, and in vitro release of the drug were evaluated. Loading efficiencies of almost 72% and 68% were achieved by UV spectrophotometry and elemental analysis methods, respectively. It was observed that 57.3% of cyclosporine was released from CsA–Pl–PEG5000–SWCNTs after 3 days. In this investigation, we conjugated CsA to an amine-terminated phospholipid–polyethylene glycol chain attached on SWCNTs via a cleavable ester bond and demonstrated the possible potential of PEGylated SWCNT-based systems for CsA delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Tang MF, Lei L, Guo SR, Huang WL. Recent progress in nanotechnology for cancer therapy. Chin J Cancer. 2010;29(9):775–80.

    Article  CAS  PubMed  Google Scholar 

  2. Mielcarek J, Skupin P. Functionalization of carbon nanotubes for multimodal drug delivery. Przegl Lek. 2011;68(3):167–70.

    PubMed  Google Scholar 

  3. Ilbasmis-Tamer S, Degim IT. A feasible way to use carbon nanotubes to deliver drug molecules: transdermal application. Expert Opin Drug Deliv. 2012;9(8):991–9.

    Article  CAS  PubMed  Google Scholar 

  4. Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta Biomembr. 2006;1758(3):404–12.

    Article  CAS  Google Scholar 

  5. Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ. Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumor. Biomaterials. 2012;33:1689–98.

    Article  CAS  PubMed  Google Scholar 

  6. Gomez-Gualdrón DA, Burgos JC, Yu J, Balbuena PB. Carbon nanotubes: engineering biomedical applications. Prog Mol Biol Transl Sci. 2011;104:175–245.

    Article  PubMed  Google Scholar 

  7. Foldvari M. Formulating nanomedicines: focus on carbon nanotubes as novel nanoexcipients. Key Eng Mater. 2010;441:53–74.

    Article  CAS  Google Scholar 

  8. Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed Nanotechnol Biol Med. 2008;4(3):183–200.

    Article  CAS  Google Scholar 

  9. Zhang Y, Bai Y, Yan B. Functionalized carbon nanotubes for potential biomedical application. Drug Deliv Today. 2010;15(11–12):428–35.

    Article  CAS  Google Scholar 

  10. Endo M, Strano MS, Ajayan PM. Potential applications of carbon nanotubes. In: Jurio A, Dresselhaus G, Dresselhaus MS, editors. Carbon nanotubes advanced topics in the synthesis, structure, properties and applications. Berlin: Springer; 2008. p. 13–62.

    Chapter  Google Scholar 

  11. Liang F, Chen B. A review on biomedical applications of single-walled carbon nanotubes. Curr Med Chem. 2010;17:10–24.

    Article  CAS  PubMed  Google Scholar 

  12. Andrews RJ. Nanotechnology and drug delivery: getting there is only half of the challenge! CNS Neurol Disord Drug Targets. 2012;11(1):96–7.

    Article  CAS  PubMed  Google Scholar 

  13. Boncel S, Müller KH, Skepper JN, Walczak KZ, Koziol KK. Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials. 2011;32(30):7677–86.

    Article  CAS  PubMed  Google Scholar 

  14. Bonner JC. Carbon nanotubes as delivery systems for respiratory disease: do the dangers outweigh the potential benefits? Expert Rev Respir Med. 2011;5(6):779–87.

    Article  CAS  PubMed  Google Scholar 

  15. Bottini M, Rosato N, Bottini N. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules. 2011;12(10):3381–93.

    Article  CAS  PubMed  Google Scholar 

  16. Chen C, Xie XX, Zhou Q, Zhang FY, Wang QL, Liu YQ, et al. EGF-functionalized single-walled carbon nanotubes for targeting delivery of etoposide. Nanotechnology. 2012;23(4):045104.

    Article  PubMed  Google Scholar 

  17. Coyuco JC, Liu Y, Tan BJ, Chiu GN. Functionalized carbon nanomaterials: exploring the interactions with Caco-2 cells for potential oral drug delivery. Int J Nanomed. 2011;6:2253–63.

    CAS  Google Scholar 

  18. Fernandez-Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol. 2011;165(7–8):1628–51.

    Article  CAS  PubMed  Google Scholar 

  19. Gulati N, Gupta H. Two faces of carbon nanotube: toxicities and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst. 2012;29(1):65–88.

    Article  CAS  PubMed  Google Scholar 

  20. Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, et al. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci. 2012;365(1):143–9.

    Article  CAS  PubMed  Google Scholar 

  21. Karmakar A, Lancu C, Bartos DM, Mahmood MW, Ghosh A, Xu Y, et al. Raman spectroscopy as a detection and analysis tool for in vitro specific targeting of pancreatic cancer cells by EGF-conjugated, single-walled carbon nanotubes. J Appl Toxicol. 2012;32(5):365–75.

    Article  CAS  PubMed  Google Scholar 

  22. Lay CL, Liu J, Liu Y. Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev Med Devices. 2011;8(5):561–6.

    Article  CAS  PubMed  Google Scholar 

  23. Liu H, Hui X, Wang Y, He Z, Li S. Effect of intratumoral injection on the biodistribution and therapeutic potential of novel cremophor EL-modified single-walled nanotube loading doxorubicin. Drug Dev Ind Pharm. 2012;38(9):1031–8.

    Article  CAS  PubMed  Google Scholar 

  24. Lu YJ, Wei KC, Ma CC, Yang SY, Chen JP. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf B Biointerfaces. 2012;89:1–9.

    Article  CAS  PubMed  Google Scholar 

  25. Luo X, Matrang C, Tan S, Alba N, Cui XT. Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials. 2013;2(26):6316–23.

    Google Scholar 

  26. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomed. 2011;6:2963–79.

    CAS  Google Scholar 

  27. Terzyk AP, Pacholczyk A, Wiśniewski M, Gauden PA. Enhanced adsorption of paracetamol on closed carbon nanotubes by formation of nanoaggregates: carbon nanotubes as potential materials in hot-melt drug deposition-experiment and simulation. J Colloid Interface Sci. 2012;376(1):209–16.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Xu H, Liu H, Wang Y, Sun J, He Z. Efficacy and biodistribution of tocopheryl polyethylene glycol succinate non-covalent functionalized single walled nanotubes loading doxorubicin in sarcoma bearing mouse model. J Biomed Nanotechnol. 2012;8(3):450–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Yang S-T, Wang Y, Liu Y, Wang H. Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surf B: Biointerfaces. 2012;97:62–9.

    Article  CAS  Google Scholar 

  30. Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev. 2011;63(14–15):1340–51.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2(2):85–120.

    Article  CAS  PubMed  Google Scholar 

  32. Pastorin G. Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm Res. 2009;26(4):746–69.

    Article  CAS  PubMed  Google Scholar 

  33. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. J Am Chem Soc Nano. 2009;3(2):307–16.

    CAS  Google Scholar 

  34. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol. 2007;2(2):108–13.

    Article  CAS  PubMed  Google Scholar 

  35. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 2006;6(7):1522–8.

    Article  CAS  PubMed  Google Scholar 

  36. Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett. 2006;161:135–42.

    Article  CAS  PubMed  Google Scholar 

  37. Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol. 2009;4(10):627–33.

    Article  CAS  PubMed  Google Scholar 

  38. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41:60–8.

    Article  CAS  PubMed  Google Scholar 

  39. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9:674–9.

    Article  CAS  PubMed  Google Scholar 

  40. Li SS, He H, Jiao QC, Chuong PH. Applications of carbon nanotubes in drug and gene delivery. Prog Chem. 2008;20:1798–803.

    CAS  Google Scholar 

  41. Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo. J Mater Chem. 2008;18:17–22.

    Article  CAS  Google Scholar 

  42. Zhuang L, Robinson JT, Tabakman SM, Yanga K, Dai H. Carbon materials for drug delivery and cancer therapy. Mat Today. 2011;14(7–8):316–23.

    Google Scholar 

  43. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed. 2005;44(39):6358–62.

    Article  CAS  Google Scholar 

  44. Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, et al. Double functionalization of carbon nanotubes for multimodal drug delivery. Chem Commun. 2006;11:1182–4.

    Article  Google Scholar 

  45. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard S. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J Am Chem Soc. 2007;129(27):8438–9.

    Article  CAS  PubMed  Google Scholar 

  46. Dhar S, Liu Z, Thomale J, Dai H, Lippard S. Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device. J Am Chem Soc. 2008;130(34):11467–76.

    Article  CAS  PubMed  Google Scholar 

  47. Bhirde AA, Patel S, Sousa AAA, Patel V, Molinolo AA, Ji Y, et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine. 2010;5(10):1535–46.

    Article  CAS  PubMed  Google Scholar 

  48. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008;68(16):6652–60.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Z, Sun X, Nakayama N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. J Am Chem Soc. 2007;1(1):50–6.

    Google Scholar 

  50. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876–7.

    Article  CAS  PubMed  Google Scholar 

  51. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K. Multi-walled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun. 2008;4:459–61.

    Article  Google Scholar 

  52. Sun X, Liu Z, Welsher K, Robinson T, Goodwin A, Zarc S, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  53. Kam NWS, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc. 2004;126:6850–1.

    Article  CAS  Google Scholar 

  54. Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005;127(16):6021–606.

    Article  CAS  PubMed  Google Scholar 

  55. Madaeni SS, Derakhshandeh K, Ahmadi S, Vatanpour V, Zinadini S. Effect of modified multi-walled carbon nanotubes on release characteristics of indomethacin from symmetric membrane coated tablets. J Membr Sci. 2012;389:110–6.

    Article  CAS  Google Scholar 

  56. Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine. 2008;4(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  57. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A. 2006;103(9):3357–62.

    Article  CAS  PubMed  Google Scholar 

  58. Lacerda L, Herrero MA, Venner K, Bianco A, Prato M, Kostarelos K. Carbon nanotube shape and individualization critical for renal excretion. Small. 2008;4(8):1130–2.

    Article  CAS  PubMed  Google Scholar 

  59. Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A. 2008;105(5):1410–5.

    Article  CAS  PubMed  Google Scholar 

  60. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2:47–52.

    Article  CAS  PubMed  Google Scholar 

  61. Hadidi N, Kobarfard F, Nafissi-Varcheh N, Aboofazeli R. Optimization of single-walled carbon nanotube solubility by non-covalent PEGylation using experimental design methods. Int J Nanomed. 2011;6:737–46.

    CAS  Google Scholar 

  62. Hadidi N, Hosseini Shirazi SF, Kobarfard F, Nafissi-Varcheh N, Aboofazeli R. Evaluation of the effect of PEGylated single-walled carbon nanotubes on viability and proliferation of Jurkat cells. IJPR. 2011;11(1):27–37.

    Google Scholar 

  63. Son SJ, Bai X, Lee SB. Inorganic hollow nanoparticles and nanotubes in nanomedicine. I. Drug/gen delivery applications. Drug Discov Today. 2007;12(15–16):650–6.

    Article  CAS  PubMed  Google Scholar 

  64. Zakharian TY, Seryshev A, Sitharaman B, Gilbert BE, Knight V, Wilson LJ. A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc. 2005;127(36):12508–9.

    Article  CAS  PubMed  Google Scholar 

  65. Kang B, Chang S, Dai Y, Yu D, Chen D. Cell response to carbon nanotubes: size-dependent intracellular uptake mechanism and subcellular fate. Small. 2010;6(21):2362–6.

    Article  CAS  PubMed  Google Scholar 

  66. Mu Q, Broughton DL, Yan B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. 2009;9(12):4370–5.

    Article  CAS  PubMed  Google Scholar 

  67. Moore M. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int. 2006;32(8):967–76.

    Article  CAS  PubMed  Google Scholar 

  68. Zhou F, Xing D, Wu B, Wu S, Ou Z, Chen WR. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 2010;10(5):1677–81.

    Article  CAS  PubMed  Google Scholar 

  69. Jin HD, Heller A, Strano MS. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 2008;8(6):1577–85.

    Article  PubMed  Google Scholar 

  70. Beauchesne PR, Chung NSC, Wasan KM. Cyclosporine A: a review of current oral and intravenous delivery systems. Drug Dev Ind Pharm. 2007;33(3):211–20.

    Article  CAS  PubMed  Google Scholar 

  71. Pollard S, Nashan B, Johnston A, Hoyer P, Belitsky P, Keown P. A pharmacokinetic and clinical review of the potential clinical impact of using different formulations of cyclosporine A. Clin Ther. 2003;25(6):1654–69.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Iran National Science Foundation (INSF) and Research Deputy of Shahid Beheshti University of Medical Sciences in Iran for the financial support of this research. This study is a part of the Ph.D. thesis of N. Hadidi, proposed and approved by the School of Pharmacy, Shahid Beheshti University of Medical Sciences (Iran).

Conflict of Interest

The authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Aboofazeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadidi, N., Kobarfard, F., Nafissi-Varcheh, N. et al. PEGylated Single-Walled Carbon Nanotubes as Nanocarriers for Cyclosporin A Delivery. AAPS PharmSciTech 14, 593–600 (2013). https://doi.org/10.1208/s12249-013-9944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9944-2

KEY WORDS

Navigation