Advertisement

AAPS PharmSciTech

, Volume 15, Issue 2, pp 279–286 | Cite as

Evaluation of Citrus Fibers as a Tablet Excipient

  • Marco Cespi
  • Giulia Bonacucina
  • Matthew Roberts
  • Samuel Hanson
  • Stephen Jones
  • Elina Makevica
  • Luca Casettari
  • Giovanni Filippo Palmieri
Research Article

Abstract

The consumption of fibers is associated with many health benefits, such as a reduction of cardiovascular and gastrointestinal diseases, control of body weight, and prevention of diabetes. Despite the widespread use of fiber supplements such as capsules or tablets, there is an almost complete lack of information concerning the technological properties of functional fibers used in nutraceutical formulations. The aim of this work was to characterize the technological properties of citrus fibers necessary for their use as a processing aid in tableting. The results obtained showed that citrus fibers share many properties of other polysaccharides used as tableting excipients, such as thermal behavior and compaction mechanism, together with an appreciable tabletability. However, the most interesting properties resulted from their disintegration power. Citrus fibers behaved in a similar manner to the well-known super disintegrant croscarmellose sodium and resulted to be little susceptible to their concentration, to lubricant type, and lubricant concentration. Thus, this work supports the idea of a potential use of citrus fibers as “active” substances and processing aid in the tableting of nutraceutical products and also as functional excipient in pharmaceutical tablets formulation.

KEY WORDS

citrus fibers disintegration Heckel analysis tabletability thermal analysis 

Supplementary material

12249_2013_59_MOESM1_ESM.doc (130 kb)
ESM 1 (DOC 130 kb)

References

  1. 1.
    Trowell H. Crude fiber, dietary fiber, and atherosclerosis. Atherosclerosis. 1972;16(1):138–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Trowell H, Southgate DT, Wolever TS, Leeds A, Gassull M, Jenkins DA. Dietary fiber redefined. Lancet. 1976;307(7966):967.CrossRefGoogle Scholar
  3. 3.
    Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes: Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. Washington, DC: National Academies Press; 2002.Google Scholar
  4. 4.
    Slavin JL. Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc. 2008;108(10):1716–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson JW, Baird P, Davis Jr RH, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fiber. Nutr Rev. 2009;67(4):188–205.PubMedCrossRefGoogle Scholar
  6. 6.
    Buttriss JL, Stokes CS. Dietary fiber and health: an overview. Nutr Bull. 2008;33:186–2000.CrossRefGoogle Scholar
  7. 7.
    Greenwald P, Clifford CK, Milner JA. Diet and cancer prevention. Eur J Cancer. 2001;37(8):948–65.PubMedCrossRefGoogle Scholar
  8. 8.
    Donaldson MS. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr J. 2004;3(19).Google Scholar
  9. 9.
    Zain RB. Cultural and dietary risk factors of oral cancer and pre-cancer—a brief overview. Oral Oncol. 2001;37(3):205–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Vargas-Murga L, Garcia-Alvarez A, Roman-Viñas B, Ngo J, Ribas-Barba L, Van Den Berg SJPL, et al. Plant food supplement (PFS) market structure in EC member states, methods, and techniques for the assessment of individual PFS intake. Food Funct. 2011;2(12):731–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Herbafood ingredients GmbH. Herbacel AQ Plus. Apple and citrus fiber. 2002.Google Scholar
  12. 12.
    Cengiz E, Gokoglu N. Changes in energy and cholesterol contents of frankfurter-type sausages with fat reduction and fat replacer addition. Food Chem. 2005;91(3):443–7.CrossRefGoogle Scholar
  13. 13.
    Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;72:163–8.Google Scholar
  14. 14.
    Cespi M, Misici-Falzi M, Bonacucina G, Ronchi S, Palmieri GF. The effect of punch tilting in evaluating powder densification in a rotary tablet machine. J Pharm Sci. 2008;97(3):1277–84. doi: 10.1002/jps.21030.PubMedCrossRefGoogle Scholar
  15. 15.
    Palmieri GF, Joiris E, Bonacucina G, Cespi M, Mercuri A. Differences between eccentric and rotary tablet machines in the evaluation of powder densification behavior. Int J Pharm. 2005;298(1):164–75. doi: 10.1016/j.ijpharm.2005.04.033.PubMedCrossRefGoogle Scholar
  16. 16.
    Heckel RW. Density–pressure relationships in powder compaction. Trans Metall Soc AIME. 1961;221:671–5.Google Scholar
  17. 17.
    Heckel RW. An analysis of powder compaction phenomena. Trans Metall Soc AIME. 1961;221:1001–8.Google Scholar
  18. 18.
    Nelson E, Busse LW, Higuchi T. The physics of tablet compression. VII. Determination of energy expenditure in the tablet compression process. J Pharm Sci. 1955;44:223–5.CrossRefGoogle Scholar
  19. 19.
    Ragnarsson G, Sjogren J. Force-displacement measurements in tableting. J Pharm Pharmacol. 1985;37(3):145–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Ragnarsson G, Sjögren J. Work of friction and net work during compaction. J Pharm Pharmacol. 1983;35:201–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Fell JT, Newton JM. Determination of tablet strength by the diametral-compression test. J Pharm Sci. 1970;59:688–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Peck GE, Baley GP, McCurdy VE, Banker GS. Tablet formulation and design. In: Lieberman HA, Lachman L, Schwartz JB, editors. Pharmaceutical Dosage Forms: Tablets. 2nd ed. New York: Dekker; 1998.Google Scholar
  23. 23.
    Patel R, Podczeck F. Investigation of the effect of type and source of microcrystalline cellulose on capsule filling. Int J Pharm. 1996;128(1–2):123–7.CrossRefGoogle Scholar
  24. 24.
    Sanghvi PP, Collins CC, Shukla AJ. Evaluation of Preflo® modified starches as new direct compression excipients I. Tableting characteristics. Pharm Res. 1993;10(11):1597–603.PubMedCrossRefGoogle Scholar
  25. 25.
    Ohwoavworhua FO, Adelakun TA. Some physical characteristics of microcrystalline cellulose obtained from raw cotton of Cochlospermum planchonii. Trop J Pharm Res. 2005;4(2):501–7.Google Scholar
  26. 26.
    Rowe RC, Sheskey PJ, Owen SC. Pharmaceutical Excipients 5th edition Pharmaceutical Press and the American Pharmacists Association; 2005Google Scholar
  27. 27.
    Ruseckaite RA, Jiménez A. Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stabil. 2003;81(2):353–8.CrossRefGoogle Scholar
  28. 28.
    Janković B. Thermal characterization and detailed kinetic analysis of cassava starch thermo-oxidative degradation. Carbohydr Polym. 2013;95(2):621–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Ardizzone S, Dioguardi FS, Mussini T, Mussini PR, Rondinini S, Vercelli B, et al. Microcrystalline cellulose powders: structure, surface features, and water sorption capability. Cellulose. 1999;6(1):57–69.CrossRefGoogle Scholar
  30. 30.
    Ouajai S, Shanks RA. Composition, structure, and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stabil. 2005;89(2):327–35.CrossRefGoogle Scholar
  31. 31.
    Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose, and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8.CrossRefGoogle Scholar
  32. 32.
    Kumar M, Mishra R, Banthia A. Development of pectin based hydrogel membranes for biomedical applications. Int J Plast Technol. 2010;14(2):213–23.CrossRefGoogle Scholar
  33. 33.
    Fernández-López J, Fernández-Ginés JM, Aleson-Carbonell L, Sendra E, Sayas-Barberá E, Pérez-Alvarez JA. Application of functional citrus by-products to meat products. Trends Food Sci Tech. 2004;15(3–4):176–85.CrossRefGoogle Scholar
  34. 34.
    Mura P, Manderioli A, Bramanti G, Furlanetto S, Pinzauti S. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm. 1995;119(1):71–9.CrossRefGoogle Scholar
  35. 35.
    Duberg M, Nyström C. Studies on direct compression of tablets XVII. Porosity-pressure curves for the characterization of volume reduction mechanisms in powder compression. Powder Technol. 1986;46(1):67–75.CrossRefGoogle Scholar
  36. 36.
    Fell JT, Newton JM. Effect of particle size and speed of compaction on density changes in tablets of crystalline and spray-dried lactose. J Pharm Sci. 1971;60(12):1866–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Cespi M, Bonacucina G, Casettari L, Ronchi S, Palmieri GF. Effect of temperature increase during the tableting of pharmaceutical materials. Int J Pharm. 2013;448(1):320–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Celik M, Marshal K. Use of a compaction simulator system in tableting research. Drug Dev Ind Pharm. 1989;15:759–800.CrossRefGoogle Scholar
  39. 39.
    Ilić I, Govedarica B, Šibanc R, Dreu R, Srčič S. Deformation properties of pharmaceutical excipients determined using an in-die and out-die method. Int J Pharm. 2013;446(1–2):6–15.PubMedGoogle Scholar
  40. 40.
    Salbu L, Bauer-Brandl A, Tho I. Direct compression behavior of low- and high-methoxylated pectins. AAPS PharmSciTech. 2010;11(1):18–26.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF. Mechanical characterization of pharmaceutical solids: a comparison between rheological tests performed under static and dynamic porosity conditions. Eur J Pharm Biopharm. 2007;67(1):277–83.PubMedCrossRefGoogle Scholar
  42. 42.
    Vandana S, Priyanka S. A review article on: super-disintegrants. J Glob Pharma Technol. 2012;4(10):15–20.Google Scholar
  43. 43.
    Chebli C, Cartilier L. Cross-linked cellulose as a tablet excipient: a binding/disintegrating agent. Int J Pharm. 1998;171(1):101–10.CrossRefGoogle Scholar
  44. 44.
    Ferrero C, Muñoz N, Velasco MV, Muñoz-Ruiz A, Jiménez-Castellanos R. Disintegrating efficiency of croscarmellose sodium in a direct compression formulation. Int J Pharm. 1997;147(1):11–21.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Marco Cespi
    • 1
  • Giulia Bonacucina
    • 1
  • Matthew Roberts
    • 2
  • Samuel Hanson
    • 2
  • Stephen Jones
    • 2
  • Elina Makevica
    • 2
  • Luca Casettari
    • 3
  • Giovanni Filippo Palmieri
    • 1
  1. 1.University of Camerino, School of PharmacyCamerinoItaly
  2. 2.Liverpool John Moores University, School of Pharmacy and Biomolecular SciencesLiverpoolUK
  3. 3.University of Urbino “Carlo Bo”, Department of Biomolecular SciencesUrbinoItaly

Personalised recommendations