AAPS PharmSciTech

, Volume 14, Issue 1, pp 64–73 | Cite as

Design, Characterization, and In Vitro Evaluation of Antifungal Polymeric Films

  • Daniel A. Real
  • María V. Martinez
  • Agustín Frattini
  • Marina Soazo
  • Alicia G. Luque
  • Marisa S. Biasoli
  • Claudio J. Salomon
  • Alejandro C. Olivieri
  • Darío Leonardi
Research Article


The objective of the present paper was the development and the full characterization of antifungal films. Econazole nitrate (ECN) was loaded in a polymeric matrix formed by chitosan (CH) and carbopol 971NF (CB). Polyethylene glycol 400 and sorbitol were used as plasticizing agents. The mechanical properties of films were poorer when the drug was loaded, probably because crystals of ENC produces network outages and therefore reduces the polymeric interactions between the polymers. Polymers–ECN and CH–CB interactions were analyzed by Fourier-transform infrared spectroscopy (FTIR), thermal gravimetry analysis, and differential thermal analysis (DTA-TGA). ECN did not show structure alterations when loaded into the films. In scanning electron microphotographs and atomic force microscopy analysis, films prepared with CB showed an evident wrinkle pattern probably due to the strong interactions between the polymers, which were observed by FTIR and DTA-TGA. The in vitro activity of the formulations against Candida krusei and Candida parapsilosis was twice as greater as the commercial cream, probably as a result of the antifungal combination of the drug with the CH activity. All these results suggest that these polymeric films containing ECN are potential candidates in view of alternatives dosages forms for the treatment of the yeast assayed.


anti-fungal activity drug delivery systems in vitro models infrared spectroscopy thermogravimetric analysis 



The National University of Rosario (UNR), the National Council Research (CONICET, Argentina), and ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) are gratefully acknowledged for financial support.


  1. 1.
    Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–78.CrossRefGoogle Scholar
  2. 2.
    Ziani K, Ursúa B, Maté JI. Application of bioactive coatings based on chitosan for artichoke seed protection. Crop Prot. 2010;29:853–9.CrossRefGoogle Scholar
  3. 3.
    Smitha B, Sridhar S, Khan A. Chitosan-sodium alginate polyion complexes as fuel cell membranes. Eur Polym J. 2005;41:1859–66.CrossRefGoogle Scholar
  4. 4.
    Yan X, Khor E, Lim LY. PEC films prepared from chitosan-alginate coacervates. Chem Pharm Bull. 2000;48:941–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Ma L, Gaoa C, Mao Z, Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Majeti NV, Ravi K. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.CrossRefGoogle Scholar
  7. 7.
    Shi CH, Shieh YT, Twu YK. Preparation and characterization of cellulose/chitosan films. Carbohydr Polym. 2009;78:169–74.CrossRefGoogle Scholar
  8. 8.
    Vargas M, Albors A, Chiralt A, Gonzalez-Martinez C. Characterization of chitosan-oleic acid composite films. Food Hydrocoll. 2009;23:536–47.CrossRefGoogle Scholar
  9. 9.
    Portes E, Gardrat C, Castellan A, Coma V. Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydr Polym. 2009;76:578–84.CrossRefGoogle Scholar
  10. 10.
    Mura P, Corti G, Cirri M, Maestrelli F, Mennini N, Bragagni M. Development of mucoadhesive films for buccal administration of flufenamic acid: effect of cyclodextrin complexation. J Pharm Sci. 2010;99:3019–29.PubMedGoogle Scholar
  11. 11.
    de la Torre PM, Enobakhare Y, Torrado G, Torrado S. Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials. 2003;24:1499–506.PubMedCrossRefGoogle Scholar
  12. 12.
    Perioli L, Ambrogi V, Pagano C, Scuota S, Rossi C. FG90 chitosan as a new polymer for metronidazole mucoadhesive tablets for vaginal administration. Int J Pharm. 2009;377:120–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Silva CL, Pereira JC, Ramalho A, Pais AACC, Sousa JJS. Films based on chitosan polyelectrolyte complexes for skin drug delivery: development and characterization. J Membr Sci. 2008;320:268–79.CrossRefGoogle Scholar
  14. 14.
    Nitayaphat W, Jiratumnukul N, Charuchinda S, Kittinaovarat S. Mechanical properties of chitosan/bamboo charcoal composite films made with normal and surface oxidized charcoal. Carbohydr Polym. 2009;78:444–8.CrossRefGoogle Scholar
  15. 15.
    Dobrynin AV, Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci. 2005;30:1049–118.CrossRefGoogle Scholar
  16. 16.
    Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Incorporation of small quantities of surfactants as a way to improve the rheological and diffusional behavior of carbopol gels. J Control Release. 2001;77:59–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Zipfel PF, Skerkaa C, Kupkaa D, Luoa S. Immune escape of the human facultative pathogenic yeast Candida albicans: the many faces of the Candida Pra1 protein. Int J Med Microbiol. 2011;301:423–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Monk B, Goffeau A. Outwitting multidrug resistance to antifungals. Science. 2008;321:367–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Hof H. Mykologie fur mediziner. Stuttgart: Thieme-Verlag; 2003.Google Scholar
  20. 20.
    Weitzman I, Summerbell R. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.PubMedGoogle Scholar
  21. 21.
    Seyfarth F, Schliemann S, Elsner P, Hipler UC. Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int J Pharm. 2008;353:139–48.PubMedGoogle Scholar
  22. 22.
    Albertini B, Passerini N, Di Sabatino M, Vitali B, Brigidi P, Rodriguez L. Polymer–lipid based mucoadhesive microspheres prepared by spray-congealing for the vaginal delivery of econazole nitrate. Eur J Pharm Sci. 2009;36:591–601.PubMedCrossRefGoogle Scholar
  23. 23.
    Dyas AM, Delargy H. Econazole nitrate. In: Florey K, editor. Analytical profiles of drug substances, 23. New York: Academic Press; 1994. p. 125–51.Google Scholar
  24. 24.
    Acartürk F. Mucoadhesive vaginal drug delivery systems. Recent Pat Drug Deliv Formul. 2009;3:193–205.PubMedCrossRefGoogle Scholar
  25. 25.
    Gavini E, Sanna V, Julianno C, Bonferoni MC, Giunchedi P. Mucoadhesive vaginal tablets as veterinary delivery system for the controlled release of an antimicrobial drug, acriflavine. AAPS PharmSciTech. 2002;3(3):article 20.CrossRefGoogle Scholar
  26. 26.
    Valenta C. The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev. 2005;57(11):1692–712.PubMedCrossRefGoogle Scholar
  27. 27.
    Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992;78:43–8.CrossRefGoogle Scholar
  28. 28.
    Khan TA, Peh KK, Chang HS. Mechanical, bioadhesive strength and biological evaluation of chitosan films for wound dressing. J Pharm Pharm Sci. 2000;3:303–11.PubMedGoogle Scholar
  29. 29.
    Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Cardenas G, Miranda P. FTIR and TGA studies of chitosan composite films. J Chil Chem Soc. 2004;49(4):291–5.CrossRefGoogle Scholar
  31. 31.
    de Oliveira HC, Fonseca JL, Pereira MR. Chitosan-poly(acrylic acid) polyelectrolyte complex membranes: preparation, characterization and permeability studies. J Biomater Sci Polym. 2008;19(2):143–60.CrossRefGoogle Scholar
  32. 32.
    Chen CH, Lai LS. Mechanical and water vapor barrier properties of tapioca starch decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocoll. 2008;22:1584–95.CrossRefGoogle Scholar
  33. 33.
    Shellhammer TH, Krochta JM. Whey protein emulsion film performance as affected by lipid type and amount. J Food Sci. 1997;62:390–4.CrossRefGoogle Scholar
  34. 34.
    Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum. 2007;78:013705. doi: 10.1063/1.2432410.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee TW, Kim JC, Hwang SJ. Hydrogel patches containing triclosan for acne treatment. Eur J Pharm Biopharm. 2003;56(3):407–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Leonardi D, Barrera MG, Lamas MC, Salomon CJ. Development of prednisone:polyethylene glycol 6000 fast-release tablets from solid dispersions: solid-state characterization, dissolution behavior, and formulation parameters. AAPS PharmSciTech. 2007;8(4):221–8.CrossRefGoogle Scholar
  37. 37.
    Domjan A, Bajdik J, Pintye-Hodi K. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy. Macromolecules. 2009;42:4667–73.CrossRefGoogle Scholar
  38. 38.
    Al-Marzouqi AH, Elwy HM, Shehadi I, Adem A. Physicochemical properties of antifungal drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J Pharm Biomed Anal. 2009;49:227–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Vasconcellos FC, Goulart GAS, Beppu MM. Production and characterization of chitosan microparticles containing papain for controlled release applications. Powder Technol. 2011;205:65–70.CrossRefGoogle Scholar
  40. 40.
    de la Torre PM, Torrado S, Torrado S. Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials. 2003;24:1459–68.PubMedCrossRefGoogle Scholar
  41. 41.
    Nunthanid J, Laungtna-anan M, Sriamornsak P, Limmatvaprirat S, Puttipipatkhachorn S, Lim LY, Khor E. Characterization of chitosan acetate as a binder for sustained release tablet. J Control Release. 2004;99:15–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Park SH, Chun MK, Choi HK. Preparation of an extended-release matrix tablet using chitosan/carbopol interpolymer complex. Int J Pharm. 2008;347:39–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Stuart B. Infrarred spectroscopy: fundamentals and applications. West Sussex: Wiley; 2004.CrossRefGoogle Scholar
  44. 44.
    Oyler AR, Naldi RE, Facchine KL, Burinsky DJ, Cozine MH, Dunphy R, et al. Characterization of autoxidation products of the antifungal compounds econazole nitrate and miconazole nitrate. Tetrahedron. 1991;47(33):6549–60.CrossRefGoogle Scholar
  45. 45.
    Gomez-Carracedo A, Alvarez-Lorenzo C, Gomez-Amoza JL, Concheiro A. Glass transitions and viscoelastic properties of Carbopol® and Noveon® compacts. Int J Pharm. 2004;274:233–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang SF, Shen L, Tong YJ, Chen L, Phang LY, Lim PQ, et al. Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab. 2005;90:123–31.CrossRefGoogle Scholar
  47. 47.
    Torres MA, Aimoli CG, Beppu MM, Frejlich J. Chitosan membrane with patterned surface obtained through solution drying. Colloids Surf A Physicochem Eng Asp. 2005;268:175–9.CrossRefGoogle Scholar
  48. 48.
    Pedersen M, Bjerregaard S, Jacobsen J, Rommelmayer Larsen A, Mehlsen Sorensen A. An econazole β-cyclodextrin inclusion complex: an unusual dissolution rate, supersaturation, and biological efficacy example. Int J Pharm. 1998;165(1):57–68.CrossRefGoogle Scholar
  49. 49.
    Nogami H, Nagai T, Fukuoka E, Sonobe T. Disintegration of the aspirin tablets containing potato starch and microcrystalline cellulose in various concentrations. Chem Pharm Bull. 1969;17:1450–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Miyazaki S, Yamaguchi H, Yokouchi C, Takada M, Hou WM. Sustained release of indomethacin from chitosan granules in beagle dogs. J Pharm Pharmacol. 1988;40:642–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Albertini B, Passerini N, Di Sabatino M, Vitali B, Brigidi P, Rodriguez L. Polymer–lipid based mucoadhesive microspheres prepared by spray-congealing for the vaginal delivery of econazole nitrate. Eur J Pharm Sci. 2009;36(4–5):591–601.PubMedCrossRefGoogle Scholar
  52. 52.
    Palmeira de Oliveira A, Ribeiro MP, Palmeira de Oliveira R, Gaspar C, Costa de Oliveira S, Correia IC, et al. Anti-Candida activity of a chitosan hydrogel: mechanism of action and cytotoxicity profile. Gynecol Obstet Invest. 2010;70(4):322–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, et al. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin. 2004;25:932–6.PubMedGoogle Scholar
  54. 54.
    Gil G, del Monaco S, Cerrutti P, Galvagno M. Selective antimicrobial activity of chitosan on beer spoilage bacteria and brewing yeasts. Biotechnol Lett. 2004;26:569–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Limam Z, Selmi S, Sadok S, El Abed A. Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr J Biotechnol. 2011;10:640–7.Google Scholar
  56. 56.
    Tayel AA, Moussa S, El-Tras WF, Knittel D, Opwis K, Schollmeyer E. Anticandidal action of fungal chitosan against Candida albicans. Int J Biol Macromol. 2010;47:454–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Tikhonov VE, Stepnova EA, Babak VG, Yamskov IA, Palma-Guerrero J, Hans-Börje J, et al. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr Polym. 2006;64:66–72.CrossRefGoogle Scholar
  58. 58.
    Wang X, Du Y, Yang J, Wang X, Shi X, Hu Y. Preparation, characterization and antimicrobial activity of chitosan/layered silicate nanocomposites. Polymer. 2006;47:6738–44.CrossRefGoogle Scholar
  59. 59.
    Martínez-Camacho AP, Cortez-Rochaa MO, Ezquerra-Brauer JM, Graciano-Verdugo AZ, Rodriguez-Félix F, Castillo-Ortega MM, et al. Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydr Polym. 2010;82:305–15.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  • Daniel A. Real
    • 1
  • María V. Martinez
    • 1
  • Agustín Frattini
    • 2
  • Marina Soazo
    • 3
  • Alicia G. Luque
    • 4
  • Marisa S. Biasoli
    • 4
  • Claudio J. Salomon
    • 1
    • 3
  • Alejandro C. Olivieri
    • 3
    • 5
  • Darío Leonardi
    • 1
    • 3
  1. 1.Departamento de Tecnología FarmacéuticaUniversidad Nacional de RosarioRosarioArgentina
  2. 2.Departamento de Física, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)RosarioArgentina
  3. 3.Instituto de Química Rosario (IQUIR, UNR-CONICET)RosarioArgentina
  4. 4.Centro de Referencia de Micología, (CEREMIC) Facultad de Ciencias Bioquímicas y FarmacéuticasUNRRosarioArgentina
  5. 5.Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y FarmacéuticasUNRRosarioArgentina

Personalised recommendations