Skip to main content
Log in

Preparation and Characterization of Stable pH-Sensitive Vesicles Composed of α-Tocopherol Hemisuccinate

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The current study aims to develop a stable pH-sensitive drug delivery system. First, cleavable polyethylene glycol-α-tocopherol hemisuccinate (PEG-THS) was synthesized. Conventional pH-sensitive vesicles composed of the Tris salt of α-tocopherol hemisuccinate (THST) were then prepared using the detergent removal technique. The vesicles had a mean particle size of (163.8 ± 5.5) nm and a zeta potential of −74.5 ± 6.4 mV. The THST vesicles were then modified using PEG-THS or uncleavable PEG-cholesterol (PEG-CHOL) (THST/PEG-lipids, 100:6 molar ratio). The mean vesicle particle size and absolute zeta potential decreased with increasing PEG-THS proportion. When the pH was decreased, the vesicle particle size and calcein release rate increased. The THST vesicles were initially Ca2+-unstable but exhibited significantly improved stability after modification with PEG-THS, especially at PEG-lipid ratios above 6%. Incubation in an acid serum increased the calcein release rate of conventional THST vesicles to 45 ± 1.98% at 10 min. However, the release rate of the PEG-CHOL vesicles remained low. The calcein release rate of PEG-THS vesicles was between those of conventional and PEG-CHOL-V. Therefore, PEG-THS can protect vesicles in serum and reconstitute their pH sensitivity in acidic conditions. Cleavable PEG-THS can be used in stable pH-sensitive preparations without loss of pH sensitivity. Free calcein and conventional vesicles eliminated from the plasma soon after injection, as well as the half-life (t 1/2) and area under the curve of PEG-THS-V encapsulating calcein, were dramatically increased. This phenomenon indicates that the use of PEG-lipid derivatives has gained a favorably long circulation effect in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Calcein-S:

Calcein solution

THST Vesicles:

Tris (hydroxymethyl) aminomethane salt of alpha-tocopherol hemisuccinate vesicles

Calcein-TV:

Calcein-tris (hydroxymethyl) aminomethane salt of alpha-tocopherol hemisuccinate vesicles

PEG-THS:

Poly(ethylene glycol)-alpha-tocopherol hemisuccinate

PEG-CHOL:

Poly(ethylene glycol)-cholesterol

PEG-THS-V:

Poly(ethylene glycol)-alpha-tocopherol hemisuccinate vesicles

PEG-CHOL-V:

Poly(ethylene glycol)-cholesterol vesicles

References

  1. Yamada K, Arita K, Kobuchi H, et al. Cholesteryl-hemisuccinate-induced apoptosis of promyelocytic leukemia HL-60 cells through a cyclosporin A-insensitive mechanism. Biochem Pharmacol. 2003;65:339–48.

    Article  PubMed  CAS  Google Scholar 

  2. Daleke DL, Hong K, Papahadjopoulos D. Endocytosis of liposomas by macrophages binding, acidification of leakage of liposomes monitored by a new fluorescence assay. Biochim Biophys Acta. 1990;1024:352–66.

    Article  PubMed  CAS  Google Scholar 

  3. Plageman PGW, Marz R, Wohlhueter RM. Transport and metabolism of deoxycytidine and 1-ß-D Arabinofuranosylcytosine into cultured Novikoff rat hepatoma cells, relationship to phosphorylation, and regulation of triphosphate synthesis. Cancer Res. 1978;38:978–89.

    Google Scholar 

  4. Drummond DC, Zignani M, Leroux JC. Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res. 2000;39:409–60.

    Article  PubMed  CAS  Google Scholar 

  5. Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56:1194–8.

    PubMed  CAS  Google Scholar 

  6. Ellens H, Bentz J, Szoka FC. Proton- and calcium-induced fusion and destabilization of liposomes. Biochemistry. 1985;24:3099–106.

    Article  PubMed  CAS  Google Scholar 

  7. Turk MJ, Reddy JA, Chmielewski JA, et al. Low characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim Biophys Acta. 2002;1559:56–68.

    Article  PubMed  CAS  Google Scholar 

  8. Straubinger RM, Duzgunes N, Papahadjopoulos D. pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett. 1985;179:148–54.

    Article  PubMed  CAS  Google Scholar 

  9. Ge SR, Pei YY. Release mechanisms of pH sensitive liposomes. Chin J Pharm. 1998;29:564–8.

    CAS  Google Scholar 

  10. Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm. 2009;71:431–44.

    Article  PubMed  CAS  Google Scholar 

  11. Oliveira MC, Rosilio V, Lesieur P. pH-sensitive liposomes as a carrier for oligonucleotides: a physico-chemical study of the interaction between DOPE and a 15-mer oligonucleotide in excess water. Biol Chem. 2000;87:127–37.

    Google Scholar 

  12. Reddy JA, Low PS. Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation. J Contr Release. 2000;64:27–37.

    Article  CAS  Google Scholar 

  13. Holland JW, Hui C, Cullis PR, Madden TD. Poly(ethylene glycol)-lipid conjugates regulate the calcium-Induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry. 1996;35:2618–24.

    Article  PubMed  CAS  Google Scholar 

  14. Kirpotin D, Hong K, Mullah N, Papahadjopoulos D, et al. Liposomes with detachable polymer coating destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett. 1996;388:115–8.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang JX, Zalipsky S, Mullah N, et al. Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers. Pharmacol Res. 2004;49:185–98.

    Article  PubMed  CAS  Google Scholar 

  16. Auguste DT, Armes SP, Brzezinska KR, et al. pH triggered release of protective poly(ethylene glycol)-b-polycation copolymers from liposomes. Biomaterials. 2006;27:2599–608.

    Article  PubMed  CAS  Google Scholar 

  17. Ducat E, Deprez J, Gillet A, et al. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles. Int J Pharm. 2011;420:319–32.

    Article  PubMed  CAS  Google Scholar 

  18. Oumzil K, Khiati S, Grinstaff MW, et al. Reduction-triggered delivery using nucleoside-lipid based carriers possessing a cleavable PEG coating. J Contr Release. 2011;151:123–30.

    Article  CAS  Google Scholar 

  19. Janoff AS, Kurtz CL, Jablonski RL. Characterization of cholesterol hemisuccinate and α-tocopherol hemisuccinate vesicles. Biochim Biophys Acta. 1988;941:165–75.

    Article  PubMed  CAS  Google Scholar 

  20. Peschka R, Purmann T, Schubert R. Cross-flow filtration—an improved for the preparation of liposomes. Int J Pharm. 1988;162:177–83.

    Article  Google Scholar 

  21. Xu H, Wang KQ, Deng YH, et al. Determination of entrapment efficiency of calcein liposomes using anion exchange resin minicolumn centrifugation-method. Chin J Pharm Anal. 2010;30:1713–6.

    Google Scholar 

  22. Xu H, Deng YH, Chen DW, et al. Esterase-triggered dePEGylation of CHST vesicles modified with cleavable PEG-lipids. J Contr Release. 2008;130:238–45.

    Article  CAS  Google Scholar 

  23. Schurtenberger P, Mazer NKW. Micelle to vesicle transition in aqueous solutions of bile salt and lecithin. J Phys Chem. 1985;89:1042–9.

    Article  CAS  Google Scholar 

  24. Ma YL, Wu YH, Zhao Y, et al. Study on synthesis and anticarcinogenic activities of vitamin E succinate. J Harbin Univ Commer Nat Sci. 2003;19:8–10.

    Google Scholar 

  25. Li HW, Wu K. Structural basis of α-tocopherol succinate as an antineoplastic agent. J Hygiene Res. 2004;33:512–4.

    CAS  Google Scholar 

  26. Sriwongsitanont S, Ueno M. Physicochemical properties of PEG-grafted liposomes. Chem Pharm Bull. 2002;50:1238–44.

    Article  PubMed  CAS  Google Scholar 

  27. Srinath P, Chary MG, Vyas SP, et al. Long-circulating liposomes of indomethacin in arthritic rats—a biodisposition study. Pharm Acta Helv. 2000;74:399–404.

    Article  PubMed  CAS  Google Scholar 

  28. Papisov MI. Theoretical considerations of RES-avoiding liposomes: molecular mechanics and chemistry of liposome interactions. Adv Drug Del Rev. 1998;32:119–38.

    Article  CAS  Google Scholar 

  29. Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm. 1998;46:255–63.

    Article  PubMed  CAS  Google Scholar 

  30. Woodle MC, Newman MS, Cohen JA. Sterically stabilized liposomes: physical and biological. J Drug Target. 1994;2:397–403.

    Article  PubMed  CAS  Google Scholar 

  31. Jizomoto H, Kanaoka E, Hirano K. pH-sensitive liposomes composed of tocopherol hemisuccinate and of phosphatidylethanolamine including tocopherol hemisuccinate. Biochim Biophys Acta. 1994;1213:343–8.

    Article  PubMed  CAS  Google Scholar 

  32. Shi GF, Guo WJ, Stephenson SM. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Contr Release. 2002;80:309–19.

    Article  CAS  Google Scholar 

  33. Woodle MC, Collins CR, Sponsler E, et al. Sterically stabilized liposomes: reduction in electrophoretic mobility but not electrostatic surface potential. Biophys J. 1992;61:902–10.

    Article  PubMed  CAS  Google Scholar 

  34. Bedu-Addo FK, Huang L. Interaction of PEG-phospholipid conjugates with phospholipid: implications in liposomal drug delivery. Adv Drug Deliv Rev. 1995;16:235–47.

    Article  CAS  Google Scholar 

  35. Zhou SH. How much time does a cycle of the body’s blood circulation need? Biol Teach. 1994;7:45.

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (81072602 and 81102394).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan Xu or Yi-Hui Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Deng, YH., Wang, KQ. et al. Preparation and Characterization of Stable pH-Sensitive Vesicles Composed of α-Tocopherol Hemisuccinate. AAPS PharmSciTech 13, 1377–1385 (2012). https://doi.org/10.1208/s12249-012-9863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9863-7

Key words

Navigation