AAPS PharmSciTech

, Volume 13, Issue 4, pp 1309–1318 | Cite as

Comparative Studies on Chitosan and Polylactic-co-glycolic Acid Incorporated Nanoparticles of Low Molecular Weight Heparin

  • Tianzhi Yang
  • Divine Nyiawung
  • Alexandra Silber
  • Jiukuan Hao
  • Leanne Lai
  • Shuhua Bai
Research Article


This study was performed to test the feasibility of chitosan and polylactic-co-glycolic acid (PLGA) incorporated nanoparticles as sustained-release carriers for the delivery of negatively charged low molecular weight heparin (LMWH). Fourier transform infrared (FTIR) spectrometry was used to evaluate the interactions between chitosan and LMWH. The shifts, intensity, and broadening of the characteristic peaks for the functional groups in the FTIR spectra indicated that strong interactions occur between the positively charged chitosans and the negatively charged LMWHs. Three types of LMWH nanoparticles (NP-1, NP-2, and NP-3) were prepared using chitosan with or without PLGA: NP-1 nanoparticles were formed by polyelectrolyte complexation after single mixing, NP-2 nanoparticles were prepared by polyelectrolyte complexation after single emulsion–diffusion–evaporation, and NP-3 nanoparticles were optimized by double emulsion–diffusion–evaporation. NP-3 nanoparticles of LMWH prepared by the emulsion–diffusion–evaporation method showed significant differences in particle morphology, size, zeta potential, and drug release profile compared to NP-1 nanoparticles formed by polyelectrolyte complexation. Another ionic complex of LMWH with chitosan-incorporated PLGA nanoparticles (NP-2) showed lower drug entrapment efficiency than that of NP-1 and NP-3. The drug release rate of NP-3 was slower than the release rates of NP-1 and NP-2, although particle morphology of NP-3 was similar to that of NP-2. Cell viability was not adversely affected when cells were treated with all three types of nanoparticles. The data presented in this study demonstrate that nanoparticles formulated with chitosan–PLGA could be a safe sustained-release carrier for the delivery of LMWH.

Key words

chitosan low molecular weight heparin nanoparticles PLGA 


  1. 1.
    Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82. doi:10.1038/nrd2614.PubMedCrossRefGoogle Scholar
  2. 2.
    Tan ML, Choong PF, Dass CR. Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol. 2009;61:3–12. doi:10.1211/jpp/61.01.0002.PubMedCrossRefGoogle Scholar
  3. 3.
    Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2004;12:41–57. doi:10.1080/10717540590889781.CrossRefGoogle Scholar
  4. 4.
    Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62:12–27. doi:10.1016/j.addr.2009.08.004.PubMedCrossRefGoogle Scholar
  5. 5.
    Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;17:247–89.PubMedCrossRefGoogle Scholar
  6. 6.
    Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125:193–209. doi:10.1016/j.jconrel.2007.09.013.PubMedCrossRefGoogle Scholar
  7. 7.
    Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57:171–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25:471–6. doi:10.1081/DDC-100102197.PubMedCrossRefGoogle Scholar
  9. 9.
    Suarez S, O’Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, et al. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res. 2001;18:1315–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M, et al. Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol. 2006;215:100–8. doi:10.1016/j.taap.2006.01.016.PubMedCrossRefGoogle Scholar
  11. 11.
    Katas H, Cevher E, Alpar HO. Preparation of polyethyleneimine incorporated poly(d,l-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. Int J Pharm. 2009;369:144–54. doi:10.1016/j.ijpharm.2008.10.012.PubMedCrossRefGoogle Scholar
  12. 12.
    Taetz S, Nafee N, Beisner J, Piotrowska K, Baldes C, Murdter TE, et al. The influence of chitosan content in cationic chitosan/PLGA nanoparticles on the delivery efficiency of antisense 2′-O-methyl-RNA directed against telomerase in lung cancer cells. Eur J Pharm Biopharm. 2009;72:358–69. doi:10.1016/j.ejpb.2008.07.011.PubMedCrossRefGoogle Scholar
  13. 13.
    Ungaro F, di Villa d’Emmanuele BR, Giovino C, Miro A, Sorrentino R, Quaglia F, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135:25–34. doi:10.1016/j.jconrel.2008.12.011.PubMedCrossRefGoogle Scholar
  14. 14.
    Amoozgar Z, Park J, Lin Q, Yeo Y. Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery. Mol Pharm. 2012;9(5):1262–70. doi:10.1021/mp2005615.PubMedGoogle Scholar
  15. 15.
    Hou Y, Hu J, Park H, Lee M. Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications. J Biomed Mater Res A. 2012;100:939–47. doi:10.1002/jbm.a.34031.PubMedGoogle Scholar
  16. 16.
    Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J. Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci. 2012;45:632–8. doi:10.1016/j.ejps.2012.01.002.PubMedCrossRefGoogle Scholar
  17. 17.
    Nandagiri VK, Gentile P, Chiono V, Tonda-Turo C, Matsiko A, Ramtoola Z, et al. Incorporation of PLGA nanoparticles into porous chitosan-gelatin scaffolds: influence on the physical properties and cell behavior. J Mech Behav Biomed Mater. 2011;4:1318–27. doi:10.1016/j.jmbbm.2011.04.019.PubMedCrossRefGoogle Scholar
  18. 18.
    Zeng P, Xu Y, Zeng C, Ren H, Peng M. Chitosan-modified poly(d,l-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing. Int J Pharm. 2011;415:259–66. doi:10.1016/j.ijpharm.2011.05.053.PubMedCrossRefGoogle Scholar
  19. 19.
    Fareed J, Jeske W, Hoppensteadt D, Clarizio R, Walenga JM. Low-molecular-weight heparins: pharmacologic profile and product differentiation. Am J Cardiol. 1998;82:3L–10L.PubMedCrossRefGoogle Scholar
  20. 20.
    Kleinschmidt K, Charles R. Pharmacology of low molecular weight heparins. Emerg Med Clin North Am. 2001;19:1025–49.PubMedCrossRefGoogle Scholar
  21. 21.
    Bai S, Ahsan F. Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm Res. 2009;26:539–48. doi:10.1007/s11095-008-9769-y.PubMedCrossRefGoogle Scholar
  22. 22.
    Bai S, Ahsan F. Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J Pharm Sci. 2010;99:4554–64. doi:10.1002/jps.22160.PubMedCrossRefGoogle Scholar
  23. 23.
    Bai S, Gupta V, Ahsan F. Cationic liposomes as carriers for aerosolized formulations of an anionic drug: safety and efficacy study. Eur J Pharm Sci. 2009;38:165–71. doi:10.1016/j.ejps.2009.07.002.PubMedCrossRefGoogle Scholar
  24. 24.
    Bai S, Gupta V, Ahsan F. Inhalable lactose-based dry powder formulations of low molecular weight heparin. J Aerosol Med Pulm Drug Deliv. 2010;23:97–104. doi:10.1089/jamp.2009.0745.PubMedCrossRefGoogle Scholar
  25. 25.
    Bai S, Thomas C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci. 2007;96:2090–106. doi:10.1002/jps.20849.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang T, Hussain A, Bai S, Khalil IA, Harashima H, Ahsan F. Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin. J Control Release. 2006;115:289–97. doi:10.1016/j.jconrel.2006.08.015.PubMedCrossRefGoogle Scholar
  27. 27.
    Yang T, Mustafa F, Bai S, Ahsan F. Pulmonary delivery of low molecular weight heparins. Pharm Res. 2004;21:2009–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: in vitro and in vivo evaluation. Int J Pharm. 2012;422:179–84. doi:10.1016/j.ijpharm.2011.10.048.PubMedCrossRefGoogle Scholar
  29. 29.
    He J, Zhou Z, Fan Y, Zhou X, Du H. Sustained release of low molecular weight heparin from PLGA microspheres prepared by a solid-in-oil-in-water emulsion method. J Microencapsul. 2011;28:763–70. doi:10.3109/02652048.2011.629740.PubMedCrossRefGoogle Scholar
  30. 30.
    Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res. 2010;27:905–19. doi:10.1007/s11095-010-0094-x.PubMedCrossRefGoogle Scholar
  31. 31.
    Sun W, Mao S, Mei D, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin. Eur J Pharm Biopharm. 2008;69:417–25. doi:10.1016/j.ejpb.2008.01.016.PubMedCrossRefGoogle Scholar
  32. 32.
    Rawat A, Majumder QH, Ahsan F. Inhalable large porous microspheres of low molecular weight heparin: in vitro and in vivo evaluation. J Control Release. 2008;128:224–32. doi:10.1016/j.jconrel.2008.03.013.PubMedCrossRefGoogle Scholar
  33. 33.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Markovich RJ, Pidgeon C. Introduction to Fourier transform infrared spectroscopy and applications in the pharmaceutical sciences. Pharm Res. 1991;8:663–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Kaur G, Rana V, Jain S, Tiwary AK. Colon delivery of budesonide: evaluation of chitosan-chondroitin sulfate interpolymer complex. AAPS PharmSciTech. 2010;11:36–45. doi:10.1208/s12249-009-9353-8.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu Z, Jiao Y, Liu F, Zhang Z. Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. J Biomed Mater Res A. 2007;83:806–12. doi:10.1002/jbm.a.31407.PubMedGoogle Scholar
  37. 37.
    Ravi Kumar MNV, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials. 2004;25:1771–7. doi:10.1016/j.biomaterials.2003.08.069.PubMedCrossRefGoogle Scholar
  38. 38.
    Awotwe-Otoo D, Zidan AS, Rahman Z, Habib MJ. Evaluation of anticancer drug-loaded nanoparticle characteristics by nondestructive methodologies. AAPS PharmSciTech. 2012;13:611–22. doi:10.1208/s12249-012-9782-7.PubMedCrossRefGoogle Scholar
  39. 39.
    Braun CS, Vetro JA, Tomalia DA, Koe GS, Koe JG, Middaugh CR. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J Pharm Sci. 2005;94:423–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Wilhelm P, Stephan D. On-line tracking of the coating of nanoscaled silica with titania nanoparticles via zeta-potential measurements. J Colloid Interface Sci. 2006;293:88–92. doi:10.1016/j.jcis.2005.06.047.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang R, Yang SG, Shim WS, Cui F, Cheng G, Kim IW, et al. Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci. 2009;98:970–84. doi:10.1002/jps.21487.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu J, Ding D, Ren G, Xu X, Yin X, Hu Y. Sustained delivery of endostatin improves the efficacy of therapy in Lewis lung cancer model. J Control Release. 2009;134:91–7. doi:10.1016/j.jconrel.2008.11.004.PubMedCrossRefGoogle Scholar
  43. 43.
    Nair KL, Jagadeeshan S, Nair SA, Kumar GS. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomed. 2011;6:1685–97. doi:10.2147/IJN.S20165.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  • Tianzhi Yang
    • 1
  • Divine Nyiawung
    • 1
  • Alexandra Silber
    • 1
  • Jiukuan Hao
    • 2
  • Leanne Lai
    • 3
  • Shuhua Bai
    • 1
  1. 1.Department of Basic Pharmaceutical Sciences, School of PharmacyHusson UniversityBangorUSA
  2. 2.Division of Pharmaceutical Sciences, James L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiUSA
  3. 3.Department of Sociobehavioral and Administrative Pharmacy, College of PharmacyNova Southeastern UniversityFort LauderdaleUSA

Personalised recommendations