Skip to main content

Advertisement

Log in

Microemulsion-Based Oxyresveratrol for Topical Treatment of Herpes Simplex Virus (HSV) Infection: Physicochemical Properties and Efficacy in Cutaneous HSV-1 Infection in Mice

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The physicochemical properties of the optimized microemulsion and the permeating ability of oxyresveratrol in microemulsion were evaluated, and the efficacy of oxyresveratrol microemulsion in cutaneous herpes simplex virus type 1 (HSV-1) infection in mice was examined. The optimized microemulsion was composed of 10% w/w of isopropyl myristate, 35% w/w of Tween 80, 35% w/w of isopropyl alcohol, and 20% w/w of water. The mean particle diameter was 9.67 ± 0.58 nm, and the solubility of oxyresveratrol in the microemulsion was 196.34 ± 0.80 mg/ml. After accelerated and long-term stability testing, the microemulsion base and oxyresveratrol-loaded microemulsion were stable. The cumulative amount of oxyresveratrol permeating through shed snake skin from microemulsion at 6 h was 93.04 times compared to that of oxyresveratrol from Vaseline, determined at 20% w/w concentration. In cutaneous HSV-1 infection in mice, oxyresveratrol microemulsion at 20%, 25%, and 30% w/w, topically applied five times daily for 7 days after infection, was significantly effective in delaying the development of skin lesions and protecting from death (p < 0.05) compared with the untreated control. Oxyresveratrol microemulsion at 25% and 30% w/w was significantly more effective than that of 30% w/w of oxyresveratrol in Vaseline (p < 0.05) and was as effective as 5% w/w of acyclovir cream, topically applied five times daily (p > 0.05). These results demonstrated that topical oxyresveratrol microemulsion at 20–30% w/w was suitable for cutaneous HSV-1 mouse infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Naesens L, De Clercq E. Recent developments in herpesvirus therapy. Herpes. 2001;8(1):12–6.

    PubMed  CAS  Google Scholar 

  2. Whitley R, Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513–8. doi:10.1016/S0140-6736(00)04638-9.

    Article  PubMed  CAS  Google Scholar 

  3. De Clercq E. Antiviral drugs in current clinical use. J Clin Virol. 2004;30:115–33. doi:/10.1016/j.jcv.2004.02.009.

    Article  PubMed  Google Scholar 

  4. Fatahzadeh M, Schwartz RA. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis and management. J Am Acad Dermatol. 2007;57(5):737–63.

    Article  PubMed  Google Scholar 

  5. Greco A, Diaz JJ, Thouvenot D, Morfin F. Novel targets for the development of anti- herpes compounds. Infect Disord Drug Targets. 2007;7(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  6. Balfour HH. Antiviral drugs. N Engl J Med. 1999;340(16):1255–68.

    Article  PubMed  CAS  Google Scholar 

  7. Zhu W, Yu A, Wang W, Dong R, Wu J, Zhai G. Formulation design of microemulsion for dermal delivery of penciclovir. Int J Pharm. 2008;360(1–2):184–90. doi:10.1016/j.ijpharm.2008.04.008.

    Article  PubMed  CAS  Google Scholar 

  8. Shishu, Rajan S, Kamalpreet. Development of novel microemulsion-based topical formulations of acyclovir for the treatment of cutaneous herpetic infections. AAPS Pharm Sci Tech. 2009;10(2):559–65. doi:10.1208/s12249-009-9242-1.

    Article  CAS  Google Scholar 

  9. Treister NS, Woo SB. Topical n-docosanol for management of recurrent herpes labialis. Expert Opin Pharmacother. 2010;11(5):853–60.

    Article  PubMed  CAS  Google Scholar 

  10. Sritularak B, De-Eknamkul W, Likhitwitayawuid K. Tyrosinase inhibitors form Artocarpus lakoocha. Thai J Pharm Sci. 1998;22:149–55.

    Google Scholar 

  11. Likhitwitayawuid K, Sritularak B, Benchanak K, Lipipun V, Mathew J, Schinaz RF. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat Prod Res. 2005;19:177–82.

    Article  PubMed  CAS  Google Scholar 

  12. Chuanasa T, Phromjai J, Lipipun V, Likhitwitayawuid K, Suzuki M, Pramyothin P, Hattori M, Shiraki K. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antiviral Res. 2008;80(1):62–70. doi:10.1016/j.antiviral.2008.05.002.

    Article  PubMed  CAS  Google Scholar 

  13. Lipipun V, Sasivimolphan P, Yoshida Y, Daikoku T, Sritularak B, Ritthidej G, Likhitwitayawuid K, Pramyothin P, Hattori M, Shiraki K. Topical cream-based oxyresveratrol in the treatment of cutaneous HSV-1 infection in mice. Antiviral Res. 2011;91(2):154–60. doi:10.1016/j.antiviral.2011.05.013.

    Article  PubMed  CAS  Google Scholar 

  14. Sasivimolphan P, Lipipun V, Likhitwitayawuid K, Takemoto M, Pramyothin P, Hattori M, Shiraki K. Inhibitory activity of oxyresveratrol on wild-type and drug-resistant varicella-zoster virus replication in vitro. Antiviral Res. 2009;84(1):95–7. doi:10.1016/j.antiviral.2009.07.010.

    Article  PubMed  CAS  Google Scholar 

  15. Kim YM, Yun J, Lee CK, Lee H, Min KR, Kim Y. Oxyresveratrol and hydroxystilbene compounds: inhibitory effect on tyrosinase and mechanism of action. J Biol Chem. 2002;227(18):16340–4. doi:10.1074/jbc.M200678200.

    Article  Google Scholar 

  16. Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TFW. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived form microglial cells. Nitric Oxide. 2003;9:64–76. doi:10.1016/j.niox.2003.09.005.DOI:dx.doi.org.

    Article  PubMed  CAS  Google Scholar 

  17. Saowakon N, Tansatit T, Wanichanon C, Chaakul W, Reutrakul V, Sobhan P. Fasciola gigantica: anthelmintic effect of the aqueous extract of Artocarpus lakoocha. Exp Parasitol. 2009;122(4):289–98.

    Article  PubMed  Google Scholar 

  18. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery system. Adv Drug Deliv Rev. 2000;45:89–121.

    Article  PubMed  CAS  Google Scholar 

  19. Santos P, Watkinson AC, Hadgraft J, Lane ME. Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacol Physiol. 2008;21:246–59. doi:10.1159/000140228.

    Article  PubMed  CAS  Google Scholar 

  20. Azeem A, Khan ZI, Aqil M, Ahmad FJ, Khar RK, Talegaonkar S. Microemulsions as a surrogate carrier for dermal drug delivery. Drug Dev Ind Pharm. 2009;35(5):525–47. doi:10.1080/03639040802448646.

    Article  PubMed  CAS  Google Scholar 

  21. Shiraki K, Rapp F. Effects of caffeine on herpes simplex virus. Intervirology. 1988;29:235–40.

    PubMed  CAS  Google Scholar 

  22. Kurokawa M, Ochiai H, Nagasaka K, Neki M, Xu H, Kadota S, Sutardjo S, Matsumoto T, Namba T, Shiraki K. Antiviral traditional medicines against herpes simplex virus (HSV-1), poliovirus, and measles virus and their therapeutic efficacies for HSV-1 infection in mice. Antiviral Res. 1993;22(2–3):175–88.

    Article  PubMed  CAS  Google Scholar 

  23. Lipipun V, Kurokawa M, Suttisri R, Taweechotipatr P, Pramyothin P, Hattori M, Shiraki K. Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res. 2003;60(3):175–80. doi:10.1016S0166-3542(03)00152-9.

    Article  PubMed  CAS  Google Scholar 

  24. Kuehl PJ, Stratton SP, Powell MB, Myrdal PB. Preformulation, formulation, and in vivo efficacy of topically applied apomine. Int J Pharm. 2009;382(1–2):104–10. doi:10.1016/j.ijpharm.2009.08.016.

    Article  PubMed  CAS  Google Scholar 

  25. Huang YB, Lin YH, Lu TM, Wang RJ, Tsai YH, Wu PC. Transdermal delivery of capsaicin derivative-sodium nonivamide acetate using microemulsions as vehicles. Int J Pharm. 2008;349(1–2):206–11.

    Article  PubMed  CAS  Google Scholar 

  26. Derle DV, Sagar BSH, Pimpale R. Microemulsion as a vehicle for transdermal permeation of nimesulide. Indian J Pharm Sci. 2006;68:622–5. doi:10.4103/0250-474X.29630.

    Article  CAS  Google Scholar 

  27. Boonme P, Krauel K, Graf A, Rades T, Junyaprasert VB. Characterization of microemulsion structure in the pseudoternary phase diagram of isopropyl palmitate/water/brij 97:1-butanol. AAPS Pharm Sci Tech. 2005;7(2):E1–6.

    Google Scholar 

  28. Djordjevic L, Primorac M, Stupar M. In vitro release of diclofenac diethylamine from caprylocaproyl macrogolglycerides based microemulsions. Int J Pharm. 2005;296:73–9. doi:/10.1016/j.ijpharm.2005.02.014.

    Article  PubMed  CAS  Google Scholar 

  29. Bali V, Ali M, Ali J. Nanocarrier for the enhanced bioavailability of a cardiovascular agent: in vitro, pharmacodynamic, pharmacokinetic and stability assessment. Int J Pharm. 2001;403(1–2):46–56. doi:10.1016/j.ijpharm.2010.10.018.

    Google Scholar 

  30. Chao J, Yu MS, Wang M, Chang RCC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med. 2008;45(7):1019–26. doi:10.1016/j.freeradbiomed.2008.07.002.

    Article  PubMed  CAS  Google Scholar 

  31. Itoh T, Xia J, Magavi R, Nishihata T, Rytting H. Use of shed snake skin as a model membrane for in vitro percutaneous penetration studies: comparison with human skin. Pharm Res. 1990;7(10):1042–7.

    Article  PubMed  CAS  Google Scholar 

  32. Chandra A, Sharma PK, Irchhiaya R. Microemulsion-based hydrogel formulation for transdermal delivery of dexamethasone. Asian J Pharm. 2009;3(1):30–6. doi:10.4103/0973-8398.49172.

    Article  Google Scholar 

  33. Kawakami K, Yoshikawa T, Moroto Y, Kanahashi K, Nishihara Y, Masuda K. Microemulsion formulation for enhanced absorption of poorly soluble drug. I. Prescription design. J Contr Release. 2002;81(1–2):65–74. doi:10.1016/S0168-3659(02)00049-4.

    Article  CAS  Google Scholar 

  34. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Ad Coll Interf Sci. 2006;123–126:369–85.

    Article  Google Scholar 

  35. Tsai YH, Chang JT, Chang JS, Huang CT, Huang YB, Wu PC. The effect of component of microemulsions on transdermal delivery of buspirone hydrochloride. J Pharm Sci. 2011;100(6):2358–65. doi:10.1002/jps.22474.

    Article  PubMed  CAS  Google Scholar 

  36. Joshi M, Patravale V. Formulation and evaluation of nanostructured lipid carrier (NLC-based gel of valdecoxib. Drug Dev Ind Pharm. 2006;32(8):911–8. doi:10.1016/j.ijpharm.2007.05.060.

    Article  PubMed  CAS  Google Scholar 

  37. Hashem FM, Shaker DS, Ghorab MK, Nasr M, Ismail A. Formation, characterization, and clinical evaluation of microemulsion containing clotrimazole for topical delivery. AAPS Pharm Sci Tech. 2011;12(3):879–86. doi:10.1208/s12249-011-9653-7.

    Article  CAS  Google Scholar 

  38. Hwang SR, Lim SJ, Park JS, Kim CK. Phospholipid-based microemulsion formulation of all-trans-retinoic acid for parenteral administration. Int J Pharm. 2004;276(1–2):175–83. doi:10.1016/j.ijpharm.2004.02.025.

    Article  PubMed  CAS  Google Scholar 

  39. Park KM, Kim CK. Preparation and evaluation of flurbiprofen-loaded microemulsion for parenteral delivery. Int J Pharm. 1999;181(2):173–9. doi:10.1016/S0378-5173(99)00029-0.

    Article  PubMed  CAS  Google Scholar 

  40. Baboota S, Alam S, Sharma S, Sahni JK, Kumar A, Ali J. Nanocarrier-based hydrogel of betamethasone dipropionate and salicylic acid for treatment of psoriasis. Int J Pharma Investig. 2011;1(3):139–47. doi:10.4103/2230- 973X.85963.

    Article  CAS  Google Scholar 

  41. Baroli B, Lopez-Quintela MA, Delgado-Charro MB, Fadda AM, Blanco-Mendez J. Microemulsions for topical delivery of 8-methoxsalen. J Contr Release. 2000;69(1):209–18. doi:10.1016/S0168-3659(00)00309-6.

    Article  CAS  Google Scholar 

  42. Rodriguez-Bonilla P, Lopez-Nicolas JM, Garcia-Carmona F. Use of reversed phase high pressure liquid chromatographyl for the physicochemical and thermodynamic characterization of oxyresveratrol/β-cyclodextrin complexes. J Chromatorgr B Anal Technol Biomed Life Sci. 2010;878(19):1569–75. doi:10.1016/j.jchromb.2010.04.016.

    Article  CAS  Google Scholar 

  43. Mei ZN, Chen HB, Weng T, Yang YJ, Yang XL. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm. 2003;56:189–96. doi:10.1016/S0939-6411(03)00067-5.

    Article  PubMed  CAS  Google Scholar 

  44. Imanidis G, Hartner KC, Mazer NA. Intestinal permeation and metabolism of a model peptide (leuprolide) and mechanisms of permeation enhancement by non-ionic surfactants. Int J Pharm. 1995;120(1):41–50. doi:0378-5173(94)00407-V.

    Article  CAS  Google Scholar 

  45. Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, Xu H, Yang X. A study of microemulsion systems for transdermal delivery of triptolide. J Contr Release. 2004;98(3):427–36. doi:10.1016/j.jconrel.2004.06.001.

    Article  CAS  Google Scholar 

  46. Zhao X, Liu JP, Zhang X, Li Y. Enhancement of transdermal delivery of theophylline using microemulsion vehicle. Int J Pharm. 2006;327(1–2):58–64. doi:10.1016/j.ijpharm.2006.07.027.

    Article  PubMed  CAS  Google Scholar 

  47. Rigg PC, Barry BW. Shed snake skin and hairless mouse skin as model membranes for human skin during permeation studies. J Invest Dermatol. 1990;94:235–40.

    Article  PubMed  CAS  Google Scholar 

  48. Harada K, Murakami T, Kawasaki E, Higashi Y, Yamamoto S, Yata N. In vitro permeability to salicylic acid of human, rodent and shed snake skin. J Pharm Pharmacol. 1993;4:414–8.

    Article  Google Scholar 

  49. Takahash K, Tamagawa S, Katagi T, Rytting JH, Nishihata T, Mizuno N. Percutaneous penetration of basic compounds through shed snake skin as a model membrane. J Pharm Pharmacol. 1993;45:882–6.

    Article  Google Scholar 

  50. Pope LE, Marcelletti JF, Katz LR, Lin JY, Katz DH, Parish ML, Spear PG. The anti- herpes simplex virus activity of n-docosanol includes inhibition of the viral entry process. Antivir Res. 1998;40(1–2):85–94. doi:org/10.1016/S0166-3542(98)00048-5.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully thank the Japan Society for the Promotion of Science 2009, University of Toyama, Chulalongkorn University Centenary Academic Development Project (2008–2009) and Chulalongkorn University Graduate Scholarship Commemorating the 72nd Anniversary of His Majesty King (2008–2010) for the support of this work. We thank Tomoko Okuda for her excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimolmas Lipipun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasivimolphan, P., Lipipun, V., Ritthidej, G. et al. Microemulsion-Based Oxyresveratrol for Topical Treatment of Herpes Simplex Virus (HSV) Infection: Physicochemical Properties and Efficacy in Cutaneous HSV-1 Infection in Mice. AAPS PharmSciTech 13, 1266–1275 (2012). https://doi.org/10.1208/s12249-012-9828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9828-x

KEY WORDS

Navigation