Skip to main content
Log in

Development, Optimization, and Anti-diabetic Activity of Gliclazide-Loaded Alginate–Methyl Cellulose Mucoadhesive Microcapsules

  • Research Article
  • Theme: Advanced Technologies for Oral Controlled Release
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this work was to develop and optimize gliclazide-loaded alginate–methyl cellulose mucoadhesive microcapsules by ionotropic gelation using central composite design. The effect of formulation parameters like polymer blend ratio and cross-linker (CaCl2) concentration on properties of gliclazide-loaded alginate–methyl cellulose microcapsules like drug encapsulation efficiency and drug release were optimized. The optimized microcapsules were subjected to swelling, mucoadhesive, and in vivo studies. The observed responses coincided well with the predicted values from the optimization technique. The optimized microcapsules showed high drug encapsulation efficiency (83.57 ± 2.59% to 85.52 ± 3.07%) with low T 50% (time for 50% drug release, 5.68 ± 0.09 to 5.83 ± 0.11 h). The in vitro drug release pattern from optimized microcapsules was found to be controlled-release pattern (zero order) with case II transport release mechanism. Particle sizes of these optimized microcapsules were 0.767 ± 0.085 to 0.937 ± 0.086 mm. These microcapsules also exhibited good mucoadhesive properties. The in vivo studies on alloxan-induced diabetic rats indicated the significant hypoglycemic effect that was observed 12 h after oral administration of optimized mucoadhesive microcapsules. The developed and optimized alginate–methyl cellulose microcapsules are suitable for prolonged systemic absorption of gliclazide to maintain lower blood glucose level and improved patient compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Tripathi KD. Essential of medical pharmacology. 4th ed. New Delhi: Jaypee Brothers Medical; 1999.

    Google Scholar 

  2. Palmer K, Brogde R. Gliclazide—an update of its pharmacological properties and therapeutic efficacy in non-insulin dependent diabetes mellitus. Drugs. 1993;46:92–125.

    Article  PubMed  CAS  Google Scholar 

  3. Mailhot J. Efficacy and safety of gliclazide in the treatment of non-insulin dependent diabetes mellitus: a Canadian multicenter study. Clin Ther. 1993;15:1060–8.

    PubMed  CAS  Google Scholar 

  4. Young JF, Wei GL, Lu R, Liu CX, Zheng BZ, Feng P. Bioavailability of gliclazide sustained release tablet in healthy volunteers. Asian J Pharmacodyn Pharmacokin. 2006;2:150–60.

    Google Scholar 

  5. Al-Kassas RS, Al-Gohary OMN, Al-Faadhel MM. Controlling of systemic absorption of gliclazide through incorporation into alginate beads. Int J Pharm. 2007;341:230–7.

    Article  PubMed  CAS  Google Scholar 

  6. Kristmundsottir T, Ingvarsdotir K. Ibuprofen microcapsules: the effect of production variables on microcapsule properties. Drug Dev Ind Pharm. 1990;20:769–78.

    Article  Google Scholar 

  7. Chowdary KPR, Srinivas Rao S. Mucoadhesive microspheres and microcapsules: current status. Indian J Pharm Sci. 2005;67(2):141–50.

    CAS  Google Scholar 

  8. Garg S, Vasir JK, Tambweker K. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm. 2003;255:13–22.

    Article  PubMed  Google Scholar 

  9. Nayak AK, Maji R, Das B. Gastroretentive drug delivery systems: a review. Asian J Pharm Clin Res. 2010;3(1):2–10.

    CAS  Google Scholar 

  10. Nayak AK, Malakar J, Sen KK. Gastroretentive drug delivery technologies: current approaches and future potential. J Pharm Edu Res. 2010;1(2):1–12.

    CAS  Google Scholar 

  11. Carvalho FC, Bruschi ML, Evangelista RC, Gremiao MPD. Mucoadhesive drug delivery systems. Brazilian J Pharm Sci. 2010;46:1–17.

    CAS  Google Scholar 

  12. Chowdary KPR, Rao YS. Mucoadhesive microspheres for oral controlled drug delivery. Biol Pharm Bull. 2004;27:1717–24.

    Article  PubMed  CAS  Google Scholar 

  13. Dhanaraju MD, Sundar VD, Nandha Kumar S, Bhaskar K. Development and evaluation of sustained delivery of diclofenac sodium from hydrophilic polymeric beads. J Young Pharmacist. 2009;1(4):301–4.

    Article  CAS  Google Scholar 

  14. Kikuchi A, Kawabuchi M, Sungihara M, Okano TS. Pulsed dextran release from calcium alginate. J Control Release. 1997;47:21–9.

    Article  CAS  Google Scholar 

  15. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114:1–14.

    Article  PubMed  CAS  Google Scholar 

  16. Smidsrod O, Draget KI. Chemistry and physical properties of alginates. Carbohydr Eur. 1996;14:6–13.

    Google Scholar 

  17. Patel YL, Sher P, Pawar AP. The effect of drug concentration and curing time on processing and properties of calcium alginate beads containing metronidazole by response surface methodology. AAPS PharmSciTech. 2006;7(4): Article 86.

    Google Scholar 

  18. Shilpa A, Agarwal SS, Rao AR. Controlled delivery of drug from alginate matrix. J Macromol Sci Polym Rev. 2003;43:187–221.

    Article  Google Scholar 

  19. Llanes F, Ryan DH, Marchessault RH. Magnetic nanostructured composites using alginates of different M/G ratios as polymeric matrix. Int J Biol Macromol. 2000;27:35–40.

    Article  PubMed  CAS  Google Scholar 

  20. Kroll E, Winnik FM, Ziolo RF. In situ preparation of nanocrystalline γ-Fe2O3 in iron (II) crosslinked alginate gels. Chem Mater. 1996;8:1594–6.

    Article  CAS  Google Scholar 

  21. Rane Y, Mashru R, Sankalia M, Sankalia J. Effect of hydrophilic swellable polymers on dissolution enhancement of carbamazepine solid dispersion studied using response surface methodology. AAPS PharmSciTech. 2007;8(2):1–11.

    Article  Google Scholar 

  22. Prajapati SK, Tripathi P, Ubaidulla U, Anand V. Design and development of gliclazide mucoadhesive microcapsules: in vitro and in vivo evaluation. AAPS PharmSciTech. 2008;9(1):224–30.

    Article  PubMed  CAS  Google Scholar 

  23. Hamed E, Sakr A. Application of multiple response optimization technique to extended release formulations design. J Control Release. 2001;73:329–38.

    Article  PubMed  CAS  Google Scholar 

  24. Ye G, Wang S, Heng PWS, Chen L, Wang C. Development and optimization of solid dispersion containing pellets of itraconazole prepared by high shear pelletization. Int J Pharm. 2007;337:80–7.

    Article  PubMed  CAS  Google Scholar 

  25. Chowdary KPR, Rao YS. Design and in vitro and in vivo evaluation of mucoadhesive microcapsules of glipizide for oral controlled release: A technical note. AAPS PharmSciTech. 2003;4(3): Article 39.

  26. Venkidesh R, Pal DK, Mohana LS, Saravanakumar A, Mandal SC. Antidiabetic activity of Smilax chinensis L. extract in streptozotacin-induced diabetic rats. Int J Phytopharm. 2010;1(2):16–21.

    Google Scholar 

  27. Karasulu E, Karasulu HY, Ertan G, Kirilmaz L, Guneri T. Extended release lipophilic indomethacin microspheres: formulation factors and mathematical equations fitted drug release rates. Eur J Pharm Sci. 2003;19:99–101.

    Article  PubMed  CAS  Google Scholar 

  28. Higuchi T. Mechanism of sustained action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  PubMed  CAS  Google Scholar 

  29. Peppas NA. Analysis of Fickian and non Fickian drug release from polymers. Pharm Acta Health. 1985;60:110–1.

    CAS  Google Scholar 

  30. Peppas NA, Koresmeyer RW. Dynamically swelling hydrogels in controlled released applications. In: Peppas NA, editor. Hydrogels in medicine and pharmacy. 3rd ed. Boca Raton: CRC; 1986. p. 109–36.

    Google Scholar 

  31. Sharma VK, Bhattacharya A. Release of metformin hydrochloride from ispaghula-sodium alginate beads adhered on cock intestinal mucosa. Indian J Pharm Edu Res. 2008;42(4):365–72.

    Google Scholar 

  32. Kim M-S, Kim J-S, You Y-H, Park HJ, Lee S, Park J-S, et al. Development of optimization of a novel oral controlled delivery system for tamsulosin hydrochloride using response surface methodology. Int J Pharm. 2007;341:97–104.

    Article  PubMed  CAS  Google Scholar 

  33. Ko JA, Park HJ, Park YS, Hwang S-J, Park JB. Chitosan microparticle preparation for controlled drug release by response surface methodology. J Microencapsul. 2004;20:791–7.

    Google Scholar 

  34. Nutan MTH, Soliman MS, Taha EI, Khan MA. Optimization and characterization of controlled release multi-particulate beads coated with starch acetate. Int J Pharm. 2005;294:89–101.

    Article  PubMed  CAS  Google Scholar 

  35. Ostberg T, Graffner C. Calcium alginate matrices or oral multiple unit administration: II. Influence of calcium concentration, amount of drug added and alginate characteristics on drug release. Int J Pharm. 1994;111:271–82.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

One of the authors is thankful to Dr. R M Dubey, Vice Chancellor, IFTM University for providing necessary facilities for animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilipkumar Pal.

Additional information

Guest Editors: Michael Repka, Joseph Reo, Linda Felton, and Stephen Howard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, D., Nayak, A.K. Development, Optimization, and Anti-diabetic Activity of Gliclazide-Loaded Alginate–Methyl Cellulose Mucoadhesive Microcapsules. AAPS PharmSciTech 12, 1431–1441 (2011). https://doi.org/10.1208/s12249-011-9709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9709-8

Key words

Navigation