Skip to main content

Advertisement

Log in

Methotrexate-Loaded Chitosan- and Glycolchitosan-Based Nanoparticles: A Promising Strategy for the Administration of the Anticancer Drug to Brain Tumors

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Brain tumor treatment employing methotrexate (MTX) is limited by the efflux mechanism of Pg-p on the blood–brain barrier. We aimed to investigate MTX-loaded chitosan or glycol chitosan (GCS) nanoparticles (NPs) in the presence and in the absence of a coating layer of Tween 80 for brain delivery of MTX. The effect of a low Tween 80 concentration was evaluated. MTX NPs were formulated following the ionic gelation technique and size and zeta potential measurements were acquired. Transport across MDCKII-MDR1 monolayer and cytotoxicity studies against C6 glioma cell line were also performed. Cell/particles interaction was visualized by confocal microscopy. The particles were shown to be cytotoxic against C6 cells line and able to overcome MDCKII-MDR1 cell barrier. GCS-based NPs were the most cytotoxic NPs. Confocal observations highlighted the internalization of Tween 80-coated fluorescent NPs more than Tween 80-uncoated NPs. The results suggest that even a low concentration of Tween 80 is sufficient for enhancing the transport of MTX from the NPs across MDCKII-MDR1 cells. The nanocarriers represent a promising strategy for the administration of MTX to brain tumors which merits further investigations under in vivo conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Blakeley J. Drug delivery to brain tumors. Curr Neur Neurosci Rep. 2008;8:235–41.

    Article  CAS  Google Scholar 

  2. Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to the Central Nervous System. Expert Opin Drug Deliv. 2009;6:1017–32.

    Article  PubMed  CAS  Google Scholar 

  3. Provenzale JM, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. Am J Roentgenol. 2005;185:763–7.

    Article  Google Scholar 

  4. Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA. Polymeric nanoparticles for the drug delivery to the central nervous system. Exp Opin Drug Deliv. 2008;5:155–74.

    Article  CAS  Google Scholar 

  5. Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrilate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 2003;20:409–16.

    Article  PubMed  CAS  Google Scholar 

  6. Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, et al. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm. 2010;74:157–63.

    Article  PubMed  CAS  Google Scholar 

  7. Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release. 2009;137:78–86.

    Article  PubMed  CAS  Google Scholar 

  8. Morris PG, Abrey LE. Therapeutic challenges in primary CNS lymphoma. Lancet. 2009;8:581–92.

    Article  CAS  Google Scholar 

  9. Duthie SJ. Folic acid-mediated inhibition of human colon cancer cell growth. Nutrition. 2001;17:736–7.

    Article  PubMed  CAS  Google Scholar 

  10. Kuznetsova N, Kandyba A, Vostrov I, Kadykov V, Gaenko G, Molotkovsky J, et al. Liposomes loaded with lipophilic prodrugs of methotrexate and melphalan as convenient drug delivery vehicles. J Drug Del Sci Tech. 2009;19:51–9.

    CAS  Google Scholar 

  11. Dhanikula RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm. 2008;5:105–16.

    Article  PubMed  CAS  Google Scholar 

  12. Denora N, Trapani A, Laquintana V, Lopedota A, Trapani G. Recent advances in medicinal chemistry and pharmaceutical technology-strategies for drug delivery to the brain. Curr Top Med Chem. 2009;9:182–96.

    Article  PubMed  CAS  Google Scholar 

  13. Csaba N, Garcia-Fuentes M, Alonso MJ. The performance of nanocarriers for transmucosal drug delivery. Expert Opin Drug Del. 2006;3:463–78.

    Article  CAS  Google Scholar 

  14. Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, et al. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm. 2010;75:26–32.

    Article  PubMed  CAS  Google Scholar 

  15. Ieva E, Trapani A, Cioffi N, Ditaranto N, Monopoli A, Sabbatini L. Analytical characterization of chitosan nanoparticles for peptide drug delivery applications. Anal Bioanal Chem. 2009;393:207–15.

    Article  PubMed  CAS  Google Scholar 

  16. Du Y, Ding Y, Sun M, Zhang L, Jiang X, Yang C. Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers. Biomacromolecules. 2007;8:1069–76.

    Article  Google Scholar 

  17. Son YJ, Jang J-S, Cho YW, Chung H, Park R-W, Kwon I-C, et al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release. 2003;91:135–45.

    Article  PubMed  CAS  Google Scholar 

  18. Hwang HY, Kim I-S, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128:23–31.

    Article  PubMed  CAS  Google Scholar 

  19. Min KH, Park K, Kim Y-S, Bae SM, Lee S, Jo HG, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127:208–18.

    Article  PubMed  CAS  Google Scholar 

  20. Soni S, Babbar AK, Sharma RK, Banerjee T, Maitra A. Pharmacoscintigraphic evaluation of polysorbate80-coated chitosan nanoparticles for brain targeting. Am J Drug Del. 2005;3:205–12.

    Article  CAS  Google Scholar 

  21. Mensch J, Oyarzabal J, Mackie C, Augustijns P. In vivo, in vitro and in silico methods for small molecule transfer across BBB. J Pharm Sci. 2009;98:4429–68.

    Article  PubMed  CAS  Google Scholar 

  22. Trapani A, Sitterberg J, Bakowsky U, Kissel T. The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. Int J Pharm. 2009;375:97–106.

    Article  PubMed  CAS  Google Scholar 

  23. Lopedota A, Trapani A, Cutrignelli A, Chiarantini L, Pantucci E, Curci R, et al. The use of Eudragit RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. Eur J Pharm Biopharm. 2009;72:509–20.

    Article  PubMed  CAS  Google Scholar 

  24. Gaillard PJ, de Boer AG. Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 2000;12:95–102.

    Article  PubMed  CAS  Google Scholar 

  25. Park J, Han TH, Lee KY, Han SS, Hwang JJ, Moon DH, et al. N-acetyl histidine-conjugated glycol chitosan self assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release. 2006;115:37–45.

    Article  PubMed  CAS  Google Scholar 

  26. de Campos A, Diebold Y, Carvalho ELS, Sanchez A, Alonso MJ. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res. 2004;21:803–10.

    Article  PubMed  Google Scholar 

  27. Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res. 2002;19:1488–94.

    Article  PubMed  CAS  Google Scholar 

  28. Behrens I, Vila Pena AI, Alonso MJ, Kissel T. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle uptake adsorption and transport. Pharm Res. 2002;19:1185–93.

    Article  PubMed  CAS  Google Scholar 

  29. Mao S, Bakowsky U, Jintapattanakit A, Kissel T. Self assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J Pharm Sci. 2006;95:1035–48.

    Article  PubMed  CAS  Google Scholar 

  30. Loverre A, Ditonno P, Crovace A, Gesualdo L, Ranieri E, Pontrelli P, et al. Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: differential modulation by rapamycin. J Am Soc Nephrol. 2004;15:2675–86.

    Article  PubMed  CAS  Google Scholar 

  31. Kamau SW, Kramer SD, Gunthert M, Wounderlj-Allenspach H. Effect of the modulation of the membrane lipid composition on the localization and function of P-glycoprotein in MDR1-MDCK cells. In vitro Cell. Dev Biol Anim. 2005;41:207–16.

    Article  CAS  Google Scholar 

  32. Janes KA, Calvo P, Alonso M. Polysaccharide colloidal nanoparticles as delivery systems for macromolecules. Adv Drug Del Rev. 2001;47:83–97.

    Article  CAS  Google Scholar 

  33. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005;44:65–73.

    Article  PubMed  CAS  Google Scholar 

  34. Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li J, et al. Evaluation of the MDR-MDCK cell line as permeability screen for the blood–brain barrier. Int J Pharm. 2005;288:349–59.

    Article  PubMed  CAS  Google Scholar 

  35. Hu Y, Ding Y, Ding D, Sun M, Zhang L, Jiang X, et al. Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers. Biomacromolecules. 2007;8:1069–76.

    Article  PubMed  CAS  Google Scholar 

  36. Kohler N, Sun C, Wang J, Zhang M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir. 2005;21:8558–64.

    Article  Google Scholar 

  37. Friche E, Jensen PB, Sehested M, Demant EJ, Nissen NN. The solvents Cremophor EL and between 80 modulate daunorubicin resistance in the multidrug resistant Ehrlich ascites tumor. Cancer Commun. 1990;2:297–303.

    PubMed  CAS  Google Scholar 

  38. Beduneau A, Saulnier P, Benoit J-P. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28:4947–67.

    Article  PubMed  CAS  Google Scholar 

  39. Janes KA, Alonso MJ. Depolymerized chitosan nanoparticles for protein delivery: preparation and characterization. J Appl Polym Sci. 2003;88:2769–76.

    Article  CAS  Google Scholar 

  40. Bonferoni MC, Sandri G, Rossi S, Ferrari F, Gibin S, Caramella C. Chitosan citrate as multifunctional polymer for vaginal delivery. Evaluation of penetration enhancement and peptidase inhibition properties. Eur J Pharm Sci. 2008;33:166–76.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was financed by Università degli Studi di Bari (Progetti di Ateneo 2008). We thank Dr. Antonella Loverre (Dipartimento di Emergenza Trapianti di Organi, (D.E.T.O.) Bari Hospital, Bari, Italy) for interpretation of confocal microphotographs. We also thank Prof. Giuseppe Trapani (University of Bari) for helpful discussions.

Declaration of interest statement

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Trapani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trapani, A., Denora, N., Iacobellis, G. et al. Methotrexate-Loaded Chitosan- and Glycolchitosan-Based Nanoparticles: A Promising Strategy for the Administration of the Anticancer Drug to Brain Tumors. AAPS PharmSciTech 12, 1302–1311 (2011). https://doi.org/10.1208/s12249-011-9695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9695-x

KEY WORDS

Navigation