Skip to main content
Log in

Understanding the Tendency of Amorphous Solid Dispersions to Undergo Amorphous–Amorphous Phase Separation in the Presence of Absorbed Moisture

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Formulation of an amorphous solid dispersion (ASD) is one of the methods commonly considered to increase the bioavailability of a poorly water-soluble small-molecule active pharmaceutical ingredient (API). However, many factors have to be considered in designing an API–polymer system, including any potential changes to the physical stability of the API. In this study, the tendency of ASD systems containing a poorly water-soluble API and a polymer to undergo amorphous–amorphous phase separation was evaluated following exposure to moisture at increasing relative humidity. Infrared spectroscopy was used as the primary method to investigate the phase behavior of the systems. In general, it was observed that stronger drug–polymer interactions, low-ASD hygroscopicity, and a less hydrophobic API led to the formation of systems resistant to moisture-induced amorphous–amorphous phase separation. Orthogonal partial least squares analysis provided further insight into the systems, confirming the importance of the aforementioned properties. In order to design a more physically stable ASD that is resistant to moisture-induced amorphous–amorphous phase separation, it is important to consider the interplay between these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  PubMed  CAS  Google Scholar 

  2. Konno H, Taylor LS. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res. 2008;25(4):969–78.

    Article  PubMed  CAS  Google Scholar 

  3. Rumondor ACF, Stanford LA, Taylor LS. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res. 2009;26(12):2599–606.

    Article  PubMed  CAS  Google Scholar 

  4. Marsac PJ, Konno H, Rumondor ACF, Taylor LS. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water. Pharm Res. 2008;25(3):647–56.

    Article  PubMed  CAS  Google Scholar 

  5. Marsac PJ, Rumondor ACF, Nivens DE, Kestur US, Stanciu L, Taylor LS. Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). J Pharm Sci. 2010;99(1):169–85.

    Article  PubMed  CAS  Google Scholar 

  6. Rumondor ACF, Taylor LS. Effects of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm. 2010;7(2):477–90.

    Article  PubMed  CAS  Google Scholar 

  7. Rumondor ACF, Marsac PJ, Stanford LA, Taylor LS. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm. 2009;6(5):1492–505.

    Article  PubMed  CAS  Google Scholar 

  8. Vasanthavada M, Tong WQ, Joshi Y, Kislalioglu MS. Phase behavior of amorphous molecular dispersions-II: role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm Res. 2005;22(3):440–8.

    Article  PubMed  CAS  Google Scholar 

  9. Rumondor ACF, Konno H, Marsac P, Taylor L. Analysis of the moisture sorption behavior of amorphous solid dispersions containing hydrophobic drugs. J Appl Polymer Sci. 2010;117(2):1055–63.

    Article  CAS  Google Scholar 

  10. Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemometr. 2006;20:341–51.

    Article  Google Scholar 

  11. Rumondor ACF, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res. 2009;26(11):2523–34.

    Article  PubMed  CAS  Google Scholar 

  12. Broman E, Khoo C, Taylor LS. A comparison of alternative polymer excipients and processing methods for making solid dispersions of a poorly water soluble drug. Int J Pharm. 2001;222(1):139–51.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14(12):1691–8.

    Article  PubMed  CAS  Google Scholar 

  14. Allen FH. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst. 2002;B58:380–8.

    CAS  Google Scholar 

  15. Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, et al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395(1–2):232–5.

    Article  PubMed  CAS  Google Scholar 

  16. Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci. 2010;99(9):4005–12.

    PubMed  CAS  Google Scholar 

  17. Marsac P, Li T, Taylor L. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26(1):139–51.

    Article  PubMed  CAS  Google Scholar 

  18. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  PubMed  CAS  Google Scholar 

  19. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  PubMed  CAS  Google Scholar 

  20. Tang XLC, Pikal MJ, Taylor LS. A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm Res. 2002;19(4):477–83.

    Article  PubMed  CAS  Google Scholar 

  21. Wolkers WF, Oliver AE, Tablin F, Crowe JH. A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr Res. 2004;339(6):1077–85.

    Article  PubMed  CAS  Google Scholar 

  22. Eriksson L, Johansson E, Kettaneh-Wold N, J.Trygg, Wikström C, Wold S. Multivariate and Megavariate Data Analysis Basic Principles and Applications (Part I): Umetrics; 2006.

  23. Laurence C, Brameld KA, Graton J, Le Questel JY, Renault E. The pK(BHX) database: toward a better understanding of hydrogen-bond basicity for medicinal chemists. J Med Chem. 2009;52(14):4073–86.

    Article  PubMed  CAS  Google Scholar 

  24. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 14th ed. al. MJone, editor. Whitehouse Station, NJ: Merck & Co., Inc.; 2006.

  25. Thompson JE. A Practical Guide to Contemporary Pharmacy Practice. 3rd ed. Baltimore: Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  26. Yalkowsky SH, He Y. Handbook of Aqueous Solubility Data: CRC Press; 2003.

  27. Chi SC, Jun HW. Release rates of ketoprofen from poloxamer gels in a membraneless diffusion cell. J Pharm Sci. 1991;80(3):280–3.

    Article  PubMed  CAS  Google Scholar 

  28. Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99(9):3787–806.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Matthew J. Jackson is gratefully acknowledged for his help in collecting infrared results. This work is funded by Purdue Research Foundation and Merck Research Laboratories. This work was supported in part by a grant from the Lilly Endowment, Inc., to Purdue University School of Pharmacy and Pharmaceutical Sciences. BVE is a Postdoctoral Researcher of the ‘Fonds voor Wetenschappelijk Onderzoek’, Flanders, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumondor, A.C.F., Wikström, H., Van Eerdenbrugh, B. et al. Understanding the Tendency of Amorphous Solid Dispersions to Undergo Amorphous–Amorphous Phase Separation in the Presence of Absorbed Moisture. AAPS PharmSciTech 12, 1209–1219 (2011). https://doi.org/10.1208/s12249-011-9686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9686-y

Key words

Navigation