Skip to main content
Log in

Ethylcellulose-Based Matrix-Type Microspheres: Influence of Plasticizer RATIO as Pore-Forming Agent

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, ethylcellulose (EC)-based microsphere formulations were prepared without and with triethyl citrate (TEC) content of 10% and 30% by water-in-oil emulsion-solvent evaporation technique. Diltiazem hydrochloride (DH) was chosen as a hydrophilic model drug and used at different drug/polymer ratios in the microspheres. The aim of the work was to evaluate the influence of plasticizer ratio on the drug release rate and physicochemical characteristics of EC-based matrix-type microspheres. The resulting microspheres were evaluated for encapsulation efficiency, particle size and size distribution, surface morphology, total pore volume, thermal characteristics, drug release rates, and release mechanism. Results indicated that the physicochemical properties of microspheres were strongly affected by the drug/polymer ratio investigated and the concentration of TEC used in the production technique. The surface morphology and pore volume of microspheres significantly varied based on the plasticizer content in the formulation. DH release rate from EC-based matrix-type microspheres can be controlled by varying the DH to polymer and plasticizer ratios. Glass transition temperature values tended to decrease in conjunction with increasing amounts of TEC. Consequently, the various characteristics of the EC microspheres could be modified based on the plasticized ratio of TEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Abdul S, Chandewar AV, Jaiswal SB. A flexible technology for modified-release drugs: multiple-unit pellet system (MUPS). J Control Release. 2010;147:2–16.

    Article  PubMed  CAS  Google Scholar 

  2. Shamma RN, Basalious EB, Shoukri RA. Development and optimization of a multiple-unit controlled release formulation of a freely water soluble drug for once-daily administration. Int J Pharm. 2011;405:102–12.

    Article  PubMed  CAS  Google Scholar 

  3. Ye Z, Rombout P, Remon JP, Vervaet C, Mooter GV. Correlation between the permeability of metoprolol tartrate through plasticized isolated ethylcellulose/hydroxypropyl methylcellulose films and drug release from reservoir pellets. Eur J Pharm Biopharm. 2007;67:485–90.

    Article  PubMed  CAS  Google Scholar 

  4. Andreani L, Cercena R, Ramos BGZ, Soldi V. Development and characterization of wheat gluten microspheres for use in a controlled release system. Mat Sci and Eng C. 2009;29:524–31.

    Article  CAS  Google Scholar 

  5. Mateovic T, Kriznar B, Bogataj M, Mrhar A. The influence of stirring rate on biopharmaceutical properties of Eudragit RS microspheres. J Microencapsul. 2002;19:29–36.

    Article  PubMed  CAS  Google Scholar 

  6. Nordstierna L, Abdalla AA, Nordin M, Nyden M. Comparison of release behaviour from microcapsules and microspheres. Progress in Org Coat. 2010;69:49–51.

    Article  CAS  Google Scholar 

  7. Kangarlou S, Haririan I, Gholipour Y. Physico-mechanical analysis of freeethylcellulose films comprised with novel plasticizers of vitamin resources. Int J Pharm. 2008;356:153–66.

    Article  PubMed  CAS  Google Scholar 

  8. Lai HL, Pitt K, Craig DQM. Characterization of the thermal properties of ethylcellulose using differential scanning and quasi-isothermal calorimetric approaches. Int J Pharm. 2010;386:178–84.

    Article  PubMed  CAS  Google Scholar 

  9. Sogol K, Ismaeil H. Mechanical influence of static versus dynamic loadings on parametrical analysis of plasticized ethyl cellulose films. Int J Pharm. 2011;408:1–8.

    Article  PubMed  CAS  Google Scholar 

  10. Şengel CT, Hasçiçek C, Gönül N. Development and in-vitro evaluation of modified release tablets including ethylcellulose microspheres loaded with diltiazem hydrochloride. J Microencapsul. 2006;23:135–52.

    Article  PubMed  Google Scholar 

  11. Grattard N, Pernin M, Marty B, Roudaut G, Champion D, Meste ML. Study of release kinetics of small and high molecular weight substances dispersed into spray-dried ethylcellulose microspheres. J Control Release. 2002;84:125–35.

    Article  PubMed  CAS  Google Scholar 

  12. Hamedelniel EI, Bajdik J, Sovány T, Pintye-Hódi K. Delayed release matrix pellet preparation containing an alkalizing pore-former agent. Chem Eng Res Des. 2011. doi:10.1016/j.cherd.2010.12.003.

  13. Schaefer MJ, Singh J. Effect of isopropyl myristic acid ester on the physical characteristics and in vitro release of etoposide from PLGA microspheres. AAPS PharmSciTech. 2000;1:Article 32.

  14. Schilling SU, Shah NH, Malick AW, McGinity JW. Properties of melt extruded enteric matrix pellets. Eur J Pharm Biopharm. 2010;74:352–61.

    Article  PubMed  CAS  Google Scholar 

  15. Gutiérrez-Rocca J, McGinity JW. Influence of water soluble and insoluble plasticizers on the physical and mechanical properties of acrylic resin copolymers. Int J Pharm. 1994;103:293–301.

    Article  Google Scholar 

  16. DiNunzio JC, Brough C, Miller DA, Williams III RO, McGinity JW. Applications of KinetiSol® dispersing for the production of plasticizer free amorphous solid dispersions. Eur J Pharm Sci. 2010;40:179–87.

    Article  PubMed  CAS  Google Scholar 

  17. Fadda HM, Khanna M, Santos JC, Osman D, Gaisford S, Basit AW. The use of dynamic mechnanical analysis (DMA) to evaluate plasticizztion of acrylic polymer films under simulated gastrointestinal conditions. Eur J Pharm Biopharm. 2010;76:493–7.

    Article  PubMed  CAS  Google Scholar 

  18. Vieira MGA, Silva MA, Santos LO, Beppu MM. Natural-based plasticizers and biopolymer films: a review. Eur Polym J. 2011;47:254–63.

    Article  CAS  Google Scholar 

  19. Kojima M, Nakagami H. Development of controlled release matrix pellets by annealing with micronized water-insoluble or enteric polymers. J Control Release. 2002;82:335–43.

    Article  PubMed  CAS  Google Scholar 

  20. Lin WJ, Lee HK, Wang DM. The influence of plasticizers on the release of theophylline from microporous-controlled tablets. J Control Release. 2004;99:415–21.

    Article  PubMed  CAS  Google Scholar 

  21. Meier MM, Kanis LA, Soldi V. Characterization and drug-permeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent. Int J Pharm. 2004;278:99–110.

    Article  PubMed  CAS  Google Scholar 

  22. Siepmann J, Lecomte F, Bodmeir R. Diffusion-controlled drug delivery systems: calculation of the required composition to achieve desired release profiles. J Control Release. 1999;60:379–89.

    Article  PubMed  CAS  Google Scholar 

  23. Tarvainen M, Sutinen R, Peltonen S, Mikkonen H, Maunus J, Vähä-Heikkilä K, et al. Enhanced film-forming properties for ethylcellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. Eur J Pharm Sci. 2003;19:363–71.

    Article  PubMed  CAS  Google Scholar 

  24. Yang QW, Flament MP, Siepmann F, Busignies V, Leclerc B, Herry C, et al. Curing of aqueous polymeric film coatings: importance of the coating level and type of plasticizer. Eur J Pharm Biopharm. 2010;74:362–70.

    Article  PubMed  CAS  Google Scholar 

  25. Sant S, Nadeau V, Hildgen P. Effect of porosity on the release kinetics of propafenone-loaded PEG-g-PLA nanoparticles. J Control Release. 2005;107:203–14.

    Article  PubMed  CAS  Google Scholar 

  26. Emeje MO, Kunle OO, Ofoefule SI. Compaction characteristics of ethylcellulose in the presence of some channeling agents: technical note. AAPS PharmSciTech. 2006;7:Article 58.

  27. Wu C, McGinity JW. Influence of ibuprofen as a solid-state plasticizer in Eudragit RS 30 D on the physicochemical properties of coated beads. AAPS PharmSciTech. 2001;2:Article 24.

  28. Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW. Solid-state plasticization of an acrylic polymer with chlorpheniramine maleate and triethylcitrate. Int J Pharm. 2002;241:301–10.

    Article  PubMed  CAS  Google Scholar 

  29. Şengel-Türk CT, Hasçiçek C, Gönül N. Microspheres-based once-daily modified release matrix tablets for oral administration in angina pectoris. J Microencapsul. 2008;25:257–66.

    Article  PubMed  Google Scholar 

  30. Türk CT, Hasçiçek C, Gönül N. Evaluation of drug-polymer interaction in polymeric microspheres containing diltiazem hydrochloride. J Therm Anal Cal. 2009;95:865–9.

    Article  Google Scholar 

  31. USP 30/NF 25. Diltiazem hydrochloride. In: United States of Pharmacopoeia 30/National Formula 25. Rockville, USA: 2007. p. 1952–6.

  32. Chow AHL, Ho SSS, Tong HHY, Ma HHM. Parameters affecting in-liquid drying microencapsulation and release rate of cefaclor. Int J Pharm. 1998;172:113–25.

    Article  CAS  Google Scholar 

  33. Oh E, Luner PE. Surface free energy of ethylcellulose films and the influence of plasticizers. Int J Pharm. 1999;188:203–19.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank TUBITAK (The Scientific and Technical Research Council of Turkey) and the Management of Scientific Research Projects of Ankara University (project number: 2003.08.03.038) for their financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nursin Gonul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengel-Turk, C.T., Hascicek, C. & Gonul, N. Ethylcellulose-Based Matrix-Type Microspheres: Influence of Plasticizer RATIO as Pore-Forming Agent. AAPS PharmSciTech 12, 1127–1135 (2011). https://doi.org/10.1208/s12249-011-9680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9680-4

KEY WORDS

Navigation