Photostability and Interaction of Ascorbic Acid in Cream Formulations

Abstract

The kinetics of photolysis of ascorbic acid in cream formulations on UV irradiation has been studied using a specific spectrophotometric method with a reproducibility of ±5%. The apparent first-order rate constants (k obs) for the photolysis of ascorbic acid in creams have been determined. The photoproducts formed in the cream formulations include dehydroascorbic acid and 2,3-diketogulonic acid. The photolysis of ascorbic acid appears to be affected by the concentration of active ingredient, pH, and viscosity of the medium and formulation characteristics. The study indicates that the ionized state and redox potentials of ascorbic acid are important factors in the photostability of the vitamin in cream formulations. The viscosity of the humectant present in the creams appears to influence the photostability of ascorbic acid. The results show that the physical stability of the creams is an important factor in the stabilization of the vitamin. In the cream formulations stored in the dark, ascorbic acid undergoes aerobic oxidation and the degradation is affected by similar factors as indicated in the photolysis reactions. The rate of oxidative degradation in the dark is about seventy times slower than that observed in the presence of light.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. 1.

    Johnston CS, Steinberg FM, Rucker RB. Ascorbic acid. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW, editors. Handbook of Vitamins. 4th ed. Boca Raton: CRC Press; 2007. Chap. 15.

    Google Scholar 

  2. 2.

    British Pharmacopoeia. London: Her Majesty's Stationary Office; 2009. Electronic version.

  3. 3.

    Blaugh SM, Hajratwala B. Kinetics of aerobic oxidation of ascorbic acid. J Pharm Sci. 1972;61:556–62.

    Article  Google Scholar 

  4. 4.

    Shi Y, Zhan X, Ma L, Lin B, Li L, Li C, et al. Compressed oxygen in drug stability experiments. Chem Pharm Bull. 2007;55:87–91.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Silva E, Quina FH. Photoinduced processes in the eye lens: do flavins really play a role. In: Silva E, Edwards AM, editors. Flavins photochemistry and photobiology. Cambridge: The Royal Society of Chemistry; 2006. Chap. 7.

    Google Scholar 

  6. 6.

    Vaid FHM, Shaikh RH, Ansari IA, Ahmad I. Spectral study of the photolysis of aqueous thiamine hydrochloride and ascorbic acid solution in the presence and absence of riboflavin. J Chem Soc Pak. 2005;27:227–32.

    CAS  Google Scholar 

  7. 7.

    Vaid FHM, Shaikh RH, Ansari IA, Ahmad I. Chromatographic study of the photolysis of aqueous thiamine hydrochloride and ascorbic acid solutions in the presence and absence of riboflavin. J Chem Soc Pak. 2006;28:464–81.

    Google Scholar 

  8. 8.

    Ahmad I, Sheraz MA, Shaikh RH, Ahmed S, Vaid FHM. Photostability of ascorbic acid in aqueous and organic solvents. J Pharm Res. 2010;3:1237–9.

    CAS  Google Scholar 

  9. 9.

    Sheraz MA, Ahmed S, Ahmad I, Qadeer K, Vaid FHM. Photodegradation and photostabilization of ascorbic acid in pharmaceutical preparations. Int J Chem Anal Sci. 2010;1:68–70.

    Google Scholar 

  10. 10.

    Sheraz MA, Ahmed S, Ahmad I, Vaid FHM, Iqbal K. Formulation and stability of ascorbic acid in topical preparations. System Rev Pharm. 2011 (in press).

  11. 11.

    Gallarate M, Carlotti ME, Trotta M, Bovo S. On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int J Pharm. 1999;188:233–41.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Raschke T, Koop U, Düsing HJ, Filbry A, Sauermann K, Jaspers S, et al. Topical activity of ascorbic acid: from in vitro optimization to in vivo efficacy. Skin Pharmacol Physiol. 2004;17:200–6.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Placzek M, Gaube S, Kerkmann U, Gilbertz KP, Herzinger T, Haen E, et al. Ultraviolet B-induced DNA damage in human epidermis is modified by the antioxidants ascorbic acid and D-alpha-tocopherol. J Invest Dermatol. 2005;124:304–7.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Lin FH, Lin JY, Gupta RD, Tournas JA, Burch JA, Selim MA, et al. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol. 2005;125:826–32.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Heber GK, Markovic B, Hayes A. An immunohistological study of anhydrous topical ascorbic acid compositions on ex vivo human skin. J Cosmet Dermatol. 2006;5:150–6.

    PubMed  Article  Google Scholar 

  16. 16.

    Nusgens BV, Humbert P, Rougier A, Colige AC, Haftek M, Lambert CA, et al. Topically applied vitamin C enhances the mRNA level of collagens I and III their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol. 2001;116:853–9.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Shindo Y, Witt E, Han D, Packer L. Dose-response effect of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis. J Invest Dermatol. 1994;102:470–5.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Higdon JV, Frei B. The antioxidant vitamin C and E. Arlington: AOAC Press; 2002. p. 1–16.

    Google Scholar 

  19. 19.

    Bissett DL. Anti-aging skin care formulations. In: Draelos ZD, Thaman LA, editors. Cosmetic Formulation of Skin Care Products. New York: Taylor & Francis Group; 2006. Chap 11.

    Google Scholar 

  20. 20.

    Wille JJ. Thixogel-novel topical delivery systems for hydrophobic plant actives. In: Rosen MR, editor. Delivery system handbook for personal care and cosmetic products-technology, applications and formulations. Norwich: William Andrew Inc; 2005. Chap. 36.

    Google Scholar 

  21. 21.

    Thoma K, Spilgies H. Photostabilization of solid and semisolid dosage forms. In: Piechocki JT, Thoma K, editors. Pharmaceutical photostability and stabilization technology. New York: Informa Healthcare; 2007. Chap. 16.

    Google Scholar 

  22. 22.

    Homann P, Gaffron H. Photochemistry and metal catalyzes: studies in a flavin sensitized oxidation of ascorbic acid. Photochem Photobiol. 1964;3:499–515.

    Article  CAS  Google Scholar 

  23. 23.

    Betageri G, Prabhu S. Semisolid preparations. In: Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology. 2nd ed. New York: Marcel Dekker; 2002. p. 2436–57.

    Google Scholar 

  24. 24.

    Flynn GL. Cutaneous and transdermal delivery-processes and systems of delivery. In: Banker GS, Rhodes CT, editors. Modern pharmaceutics. New York: Marcel Dekker; 2002. Chap 8.

    Google Scholar 

  25. 25.

    Lu GW, Flynn GL. Cutaneous and transdermal delivery-processes and systems of delivery. In: Florence AT, Siepmann J, editors. Modern pharmaceutics-applications and advances. Vol. 2. 5th ed. New York: Informa Healthcare Inc; 2009. Chap. 3.

    Google Scholar 

  26. 26.

    Ganshirt H, Malzacher A. Separation of several vitamins of the B group and C by chromatography. Naturwiss. 1960;47:279–80.

    Article  CAS  Google Scholar 

  27. 27.

    Bolliger HR, Konig A. Water-soluble vitamins. In: Stahl E, editor. Thin-layer chromatography. Berlin: Springer; 1969. p. 304–6.

    Google Scholar 

  28. 28.

    Saari JC, Baker EM, Sauberlich HE. Thin-layer chromatographic separation of the oxidative degradation products of ascorbic acid. Anal Biochem. 1967;18:173–7.

    Article  CAS  Google Scholar 

  29. 29.

    Hatchard CG, Parker CA. A new sensitive chemical actinometer II Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc London Ser A. 1956;A235:518–36.

    Google Scholar 

  30. 30.

    Heelis PF, Parsons BJ, Phillips GO, McKellar JF. The flavin sensitized photooxidation of ascorbic acid: a continuous and flash photolysis study. Photochem Photobiol. 1981;37:7–13.

    Article  Google Scholar 

  31. 31.

    Lavoie JC, Chessex P, Rouleau T, Migneault D, Comte B. Light-induced byproducts of vitamin C in multivitamin solutions. Clin Chem. 2004;50:135–40.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Davies MB, Austin J, Partridge DA. Vitamin C: its chemistry and biochemistry. Cambridge: The Royal Society of Chemistry; 1991.

    Google Scholar 

  33. 33.

    Rumsey SC, Levine M. Vitamin C. In: Song WO, Beecher GR, Eitenmiller RR, editors. Modern analytical methodologies in fat- and water-soluble vitamins. New York: Wiley; 2000. Chap. 13.

    Google Scholar 

  34. 34.

    Zeng W, Martinuzzi F, MacGregor A. Development and application of a novel UV method for the analysis of ascorbic acid. J Pharm Biomed Anal. 2005;36:1107–11.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    O'Neil MJ, editor. The Merck Index. 13th ed. Rahway NJ, USA: Merck & Co Inc.; 2001; Electronic version.

  36. 36.

    Moffat AC, Osselton MD, Widdop B. Clarke's analysis of drugs and poisons. 3rd ed. London: Pharmaceutical Press; 2004. p. 649–50.

    Google Scholar 

  37. 37.

    Ogata Y, Kosugi Y. Solvent effect on the autooxidation of L-ascorbic acid. Tetrahedron. 1969;25:1055–62.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Verma KK, Jain A, Verma A, Chaurasia A. Spectrophotometric determination of ascorbic acid in pharmaceuticals by background correction and flow injection. Analyst. 1991;116:641–5.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Billany M. Suspensions and emulsions. In: Aulton ME, editor. Pharmaceutics: the science of dosage form design. 2nd ed. Philadelphia: Churchill Livingstone; 2002. Chap. 23.

    Google Scholar 

  40. 40.

    Saso L, Valentini G, Mattei E, Panzironi C, Casini ML, Grippa E, et al. Stabilization of rat serum proteins following oral administration of fish oil. Arch Pharm Res. 1999;22:485–90.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Aucamp JP, Cosme AM, Lye GJ, Dalby PA. High-throughput measurement of protein stability in microtiter plates. Biotechnol Bioeng. 2005;89:599–607.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Kim CJ. Surface chemistry and colloids. In: Advanced pharmaceutics, physicochemical principles. CRC Press: Boca Raton; 2004. Chap. 4.

  43. 43.

    Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009. pp. 455–6, 473–4, 697–9.

    Google Scholar 

  44. 44.

    Im-Esap W, Siepmann J. Disperse systems. In: Banker GS, Rhodes CT, editors. Modern pharmaceutics. New York: Marcel Dekker; 2002. Chap 9.

    Google Scholar 

  45. 45.

    Wallwork SC, Grant DJW. Physical chemistry for students of pharmacy and biology. 3rd ed. New York: Longmann; 1977. p. 502–5.

    Google Scholar 

  46. 46.

    Laidler KJ. Chemical kinetics. 3rd ed. New York: Harper and Row; 1987. p. 183–5.

    Google Scholar 

  47. 47.

    Flick EW. Industrial solvents handbook. 5th ed. New Jersey: Noyes Data Corporation; 1998. p. 359–74. 434–42.

    Google Scholar 

  48. 48.

    Kassem MA, Kassem AA, Ammar HO. Studies on the stability of injectable L-ascorbic acid solutions I Effect of pH solvent light and container. Pharm Acta Helv. 1969;44:611–23.

    PubMed  CAS  Google Scholar 

  49. 49.

    Bisby RH, Morgan CG, Hamblett I, Gorman AA. Quenching of singlet oxygen by trolox C ascorbate and amino acids: effect of pH and temperature. J Phys Chem. 1999;103:7454–9.

    CAS  Google Scholar 

  50. 50.

    Moura T, Gaudy D, Jacob M, Cassanas G. pH influence on the stability of ascorbic acid spray-drying solutions. Pharm Acta Helv. 1994;69:77–80.

    CAS  Google Scholar 

  51. 51.

    Fasman GD, editor. CRC handbook of biochemistry and molecular biology. 3 rd ed. Physical Chemical Data, Vol. 1, Ohio: CRC Press Cleveland; 1976. pp. 122–30.

  52. 52.

    Sinko PJ. Chemical kinetics and stability. Martin's physical pharmacy and pharmaceutical sciences. 5th ed. Baltimore: Lippincott Williams & Wilkins; 2006. Chap 8, 15, 18.

  53. 53.

    Ahmad I, Fasihullah Q, Noor A, Ansari IA, Ali QNM. Photolysis of riboflavin in aqueous solution: a kinetic study. Int J Pharm. 2004;280:199–208.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Ahmad I, Tollin G. Solvent effect on flavin electron transfer reactions. Biochemistry. 1981;20:5925–8.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Sheraz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmad, I., Sheraz, M.A., Ahmed, S. et al. Photostability and Interaction of Ascorbic Acid in Cream Formulations. AAPS PharmSciTech 12, 917 (2011). https://doi.org/10.1208/s12249-011-9659-1

Download citation

KEY WORDS

  • ascorbic acid
  • cream formulations
  • kinetics
  • photostability
  • spectrophotometric method