Skip to main content
Log in

Templated Ultrathin Polyelectrolyte Microreservoir for Delivery of Bovine Serum Albumin: Fabrication and Performance Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the study was to develop ultrathin polyelectrolyte microreservoir (UPM) using two combinations of synthetic/synthetic (S/s; poly(allylamine hydrochloride) (PAH)/sodium poly(styrenesulfonate)) and synthetic/natural (S/n; PAH/sodium alginate) polyelectrolytes over spherical porous CaCO3 core particles (CP) followed by core removal and to evaluate its biocompatibility and integrity of loaded model protein bovine serum albumin (BSA). A novel process for synthesis of CP was developed to obtain maximum yield of monodisperse vaterite (spherical) polymorph. The prepared UPM was characterized for surface morphology, layer-by-layer growth, pay load efficiency, integrity of BSA, as well as viability and cell adhesion using murine J 774 macrophages (Φ). In vitro release profile revealed that both S/s and S/n UPM were able to provide sufficient diffusion barrier to release protein at physiological pH. It has been observed that S/n UPM are fully biocompatible due to obvious reason of using natural polymer. In a separate experiment, the S/s UPM surface was modified with pluronic F-68 to tune biocompatibility which provides evidences for safety and tolerability of the S/s UPM as well. In nutshell, the proposed system could successfully be used for the delivery of proteins, and moreover, the system can be tailored to impart desired properties at any stage of layering especially in terms of drug release and to retain the integrity of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gao CY, Donath E, Mohwald H, Shen JC. Spontaneous deposition of water-soluble substances into microcapsules: phenomenon, mechanism and application. Angew Chem Int Ed. 2002;41:3789–93.

    Article  CAS  Google Scholar 

  2. Sukhorukov GB, Donath E, Moya S, Susha A, Voigt A, Hartmann J, et al. Microencapsulation by means of step-wise adsorption of polyelectrolytes. J Microencapsul. 2000;17:177–85.

    Article  PubMed  CAS  Google Scholar 

  3. Lvov Y, Antipov AA, Mamedov A, Mohwald H. Urease encapsulation in nanoorganized microshells. Nano Lett. 2001;1:125–8.

    Article  CAS  Google Scholar 

  4. Dahne L, Leporatti S, Donath E, Mohwald H. Fabrication of micro reaction cages with tailored properties. J Am Chem Soc. 2001;123:5431–6.

    Article  PubMed  CAS  Google Scholar 

  5. Sukhorukov G. Designed nano-engineered polymer films on colloidal particles and capsules. In: Mobius D, Miller R, editors. Novel methods to study interfacial layers. Amsterdam: Elsevier Science; 2001. p. 383–414.

    Google Scholar 

  6. Decher G, Hong JD, Schimtt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films. 1992;210(1–2):831–5.

    Article  Google Scholar 

  7. Volodkin DV, Petrov AI, Prevot M, Sukhorukov GB. Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir. 2004;20(8):3398–406.

    Article  PubMed  CAS  Google Scholar 

  8. Shchukin DG, Patel AA, Sukhorukov GB, Lvov YM. Nanoassembly of biodegradable microcapsules for DNA encasing. J Am Chem Soc. 2004;126:3374–5.

    Article  PubMed  CAS  Google Scholar 

  9. Pommersheim R, Schrezenmeir J, Voigt W. Immobilization of enzymes by multilayer microcapsules. Macromol Chem Phys. 1994;195:1557–67.

    Article  CAS  Google Scholar 

  10. Gombotz WR, Wee SF. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–85.

    Article  PubMed  CAS  Google Scholar 

  11. Singh ON, Burgess DJ. Characterization of albumin–alginic acid complex coacervation. J Pharm Pharmacol. 1989;41:670–3.

    PubMed  CAS  Google Scholar 

  12. Ku C, Dixit V, Shaw W, Gitnick G. In vitro slow release profile of endothelial cell growth factor immobilized within calcium alginate microbeads. Artif Cells Blood Substit Immobil Biotechnol. 1995;23:143–51.

    Article  Google Scholar 

  13. Vandenberg GW, De La Noue JJ. Evaluation of protein release from chitosan–alginate microcapsules produced using external or internal gelation. J Microencapsul. 2001;18:433–41.

    Article  PubMed  CAS  Google Scholar 

  14. Dupuy B, Minnot AP. FT-IR of membranes made with alginate/polylysine complexes—variations with the mannuronic or guluronic content of the polysaccharides. Artif Cells Blood Substit Immobil Biotechnol. 1994;22:71–82.

    Article  PubMed  CAS  Google Scholar 

  15. Martisen A, Skjak-Braek G, Smidsrod O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng. 1989;33:79–89.

    Article  Google Scholar 

  16. Sukhorukov GB, Mohwald H. Multifunctional cargo systems for biotechnology. Trends Biotechnol. 2007;25(3):93–8.

    Article  PubMed  CAS  Google Scholar 

  17. Zahr AS, De Villiers M, Pishko MV. Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. Langmuir. 2005;21:403–10.

    Article  PubMed  CAS  Google Scholar 

  18. Khopade AJ, Caruso F. Surface modification of polyelectrolyte multilayered-coated particles for biological application. Langmuir. 2003;19:6219–25.

    Article  CAS  Google Scholar 

  19. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.

    Article  PubMed  CAS  Google Scholar 

  20. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Meth. 1989;119:203–10.

    Article  CAS  Google Scholar 

  21. Decher G. Fuzzy nanoassemblies: towards layered polymeric multicomposite. Science. 1997;277:1232–7.

    Article  CAS  Google Scholar 

  22. Laemmli UK. Cleavage of structural proteins during the assembly of bacteriophage T4. Nature. 1970;277:680–5.

    Article  Google Scholar 

  23. Caruso F, Caruso RA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science. 1998;282:1111–4.

    Article  PubMed  CAS  Google Scholar 

  24. Ye S, Wang C, Liu X, Tong Z. Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan to alginate multilayer films. J Control Release. 2005;106:319–28.

    Article  PubMed  CAS  Google Scholar 

  25. Donath E, Moya S, Neu B, Sukhorukov GB, Georgieva R, Voigt A, et al. Hollow polymer shells from biological templates: fabrication to potential applications. Chem Eur J. 2002;8:5481–5.

    Article  CAS  Google Scholar 

  26. An ZH, Lu G, Mohwald H, Li JB. Self assembly of human serum albumin and L-alpha-dimyristoylphosphatidic acid (DMPA) microcapsules for controlled drug release. Chem Eur J. 2004;10:5848–52.

    Article  CAS  Google Scholar 

  27. Hoogeveen NG, Stuart MAC, Fleer GJ, Boher MR. Formation and stability of multilayers of polyelectrolytes. Langmuir. 1996;12:3675–81.

    Article  CAS  Google Scholar 

  28. Dubas ST, Schlenoff JB. Polyelectrolyte multilayers containing a weak polyacid: construction and deconstruction. Macromolecules. 2001;34:3736–40.

    Article  CAS  Google Scholar 

  29. Antipov AA, Shchukin L, Fedutik Y, Petrov AI, Sukhorukov GB, Mohwald H, et al. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloids Surf, A Physicochem Eng Asp. 2003;224:175–83.

    Article  CAS  Google Scholar 

  30. Winger TM, Ludovice PJ, Chaikof EL. Formation and stability of complex membrane-mimetic monolayers on solid supports. Langmuir. 1999;15:3866–74.

    Article  CAS  Google Scholar 

  31. Lee JW, Park JK, Lee JH. Thermo sensitive permeation from side-chain crystalline ionomers. J Polym Sci, B, Polym Phys. 2000;38:823–30.

    Article  CAS  Google Scholar 

  32. Yan C, Resau JH, Heweston J, West M, Rill WL, Kende M, et al. Characterization and morphological analysis of protein loaded poly (lactide-co-glycolide) microparticles prepared by water-in-oil-in-water emulsion technique. J Control Release. 1994;32:231–41.

    Article  CAS  Google Scholar 

  33. Gander B, Thomasin C, Merkle HP, Men Y, Corradin G. Pulsed tetanus toxoids release from PLA-microspheres to its relevance for immunogenicity in mice. Proc Int Symp Control Release Bioact Mater. 1993;20:65–6.

    Google Scholar 

  34. Schwendeman SP, Costantino HR, Gupta RK, Tobio M, Chang AC, Alonso MJ, et al. Strategies for stabilizing tetanus toxoid towards the development of a single-dose tetanus vaccine. In: Brown F, editor. New approaches to stabilization of vaccines potency. Dev Biol Stand, 57. Basel: Karger; 1996. p. 293–306.

    Google Scholar 

  35. Tabata Y, Ikada Y. Effect of size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials. 1988;9:356–62.

    Article  PubMed  CAS  Google Scholar 

  36. Torche AM, Corre L, Albina P, Jestin EA, Verge R. PLGA microspheres phagocytosis by pig alveolar macrophages: influence of poly (vinyl alcohol) concentration, nature of loaded-protein and copolymer nature. J Drug Target. 2000;7:343–54.

    Article  PubMed  CAS  Google Scholar 

  37. Muller RH, Ruhl D, Paulke BR. Influence of fluorescent labeling of polystyrene particles on phagocytic uptake surface hydrophobicity and plasma protein adsorption. Pharm Res. 1997;14:18–24.

    Article  PubMed  CAS  Google Scholar 

  38. McEvoy L, Williamson P, Schlegel RA. Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages. Proc Natl Acad Sci USA. 1986;83:3311–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance to Dr. P.R. Mishra through CSIR XI Network project (NWP 0035) on “Nanomaterials and Nanodevices for applications in Health and diseases” is gratefully acknowledged. Girish K Gupta and V. Jain are thankful to Indian Council of Medical Research and Council of Scientific and Industrial Research, New-Delhi, India for providing Senior Research Fellowships and Research Associate fellowship, respectively. Prof. S.C. Lakhotia, Department of Zoology, Banaras Hindu University, Varanasi, India is gratefully acknowledged for providing Confocal Laser Scanning Microphotography facility. The CDRI communication no. is 7409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat Ranjan Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, G.K., Jain, V. & Mishra, P.R. Templated Ultrathin Polyelectrolyte Microreservoir for Delivery of Bovine Serum Albumin: Fabrication and Performance Evaluation. AAPS PharmSciTech 12, 344–353 (2011). https://doi.org/10.1208/s12249-011-9593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9593-2

Key words

Navigation