Skip to main content

Advertisement

Log in

Recent Advancement of Chitosan-Based Nanoparticles for Oral Controlled Delivery of Insulin and Other Therapeutic Agents

  • Review Article
  • Theme: Advanced Technologies for Oral Controlled Release
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for the preparation of oral nanoparticles due to its vastly improved properties, such as better drug retention capability, improved permeation, enhanced mucoadhesion and sustained release of therapeutic agents. Chitosan derivatized polymers are primarily the quaternized chitosan derivatives, chitosan cyclodextrin complexes, thiolated chitosan, pegylated chitosan and chitosan combined with other peptides. The current review focuses on the recent advancements in the field of oral controlled release via chitosan nanoparticles and discusses about its in vitro and in vivo implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27.

    Article  PubMed  CAS  Google Scholar 

  2. Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Alonso MJ. Chitosan-PEG nanocapsules as new carriers for oral peptide delivery. Effect of chitosan pegylation degree. J Control Release. 2006;111(3):299–308.

    Article  PubMed  CAS  Google Scholar 

  3. Woodley JF. Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst. 1994;11(2–3):61–95.

    PubMed  CAS  Google Scholar 

  4. Werle M, Takeuchi H, Bernkop-Schnurch A. Modified chitosans for oral drug delivery. J Pharm Sci. 2009;98(5):1643–56.

    Article  PubMed  CAS  Google Scholar 

  5. Singh R, Singh S, Lillard Jr JW. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci. 2008;97(7):2497–523.

    Article  PubMed  CAS  Google Scholar 

  6. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  7. Simerska P, Moyle PM, Olive C, Toth I. Oral vaccine delivery—new strategies and technologies. Curr Drug Deliv. 2009;6(4):347–58.

    Article  PubMed  CAS  Google Scholar 

  8. Allemann E, Leroux J, Gurny R. Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev. 1998;34(2–3):171–89.

    Article  PubMed  CAS  Google Scholar 

  9. Chiu GN, Wong MY, Ling LU, Shaikh IM, Tan KB, Chaudhury A, et al. Lipid-based nanoparticulate systems for the delivery of anti-cancer drug cocktails: implications on pharmacokinetics and drug toxicities. Curr Drug Metab. 2009;10(8):861–74.

    Article  PubMed  CAS  Google Scholar 

  10. Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1–3):151–70.

    Article  PubMed  CAS  Google Scholar 

  11. Kularatne SA, Low PS. Targeting of nanoparticles: folate receptor. Methods Mol Biol. 2010;624:249–65.

    Article  PubMed  CAS  Google Scholar 

  12. Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul. 2007;1(1):37–51.

    Article  PubMed  CAS  Google Scholar 

  13. Prabaharan M. Review paper: chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl. 2008;23(1):5–36.

    Article  PubMed  CAS  Google Scholar 

  14. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198–206.

    Article  PubMed  CAS  Google Scholar 

  15. Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine. 2006;1(2):117–28.

    Article  PubMed  CAS  Google Scholar 

  16. Prego C, Torres D, Alonso MJ. The potential of chitosan for the oral administration of peptides. Expert Opin Drug Deliv. 2005;2(5):843–54.

    Article  PubMed  CAS  Google Scholar 

  17. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.

    Article  PubMed  CAS  Google Scholar 

  18. Wong TW. Chitosan and its use in design of insulin delivery system. Recent Pat Drug Deliv Formul. 2009;3(1):8–25.

    Article  PubMed  CAS  Google Scholar 

  19. Damge C, Reis CP, Maincent P. Nanoparticle strategies for the oral delivery of insulin. Expert Opin Drug Deliv. 2008;5(1):45–68.

    Article  PubMed  CAS  Google Scholar 

  20. Felt O, Buri P, Gurny R. Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm. 1998;24(11):979–93.

    Article  PubMed  CAS  Google Scholar 

  21. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15(9):1326–31.

    Article  PubMed  CAS  Google Scholar 

  22. Rabea EI, Badawy ME, Steurbaut W, Rogge TM, Stevens CV, Smagghe G, et al. Fungicidal effect of chitosan derivatives containing an N-alkyl group on grey mould Botryti77s cinerea and rice leaf blast Pyricularia grisea. Commun Agric Appl Biol Sci. 2005;70(3):219–23.

    PubMed  CAS  Google Scholar 

  23. Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF. Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater. 2004;69(2):216–22.

    Article  PubMed  CAS  Google Scholar 

  24. Sugano M, Watanabe S, Kishi A, Izume M, Ohtakara A. Hypocholesterolemic action of chitosans with different viscosity in rats. Lipids. 1988;23(3):187–91.

    Article  PubMed  CAS  Google Scholar 

  25. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62(1):59–82.

    Article  PubMed  CAS  Google Scholar 

  26. Masotti A, Ortaggi G. Chitosan micro- and nanospheres: fabrication and applications for drug and DNA delivery. Mini Rev Med Chem. 2009;9(4):463–9.

    Article  PubMed  CAS  Google Scholar 

  27. Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med. 2009;20(5):1057–79.

    Article  PubMed  CAS  Google Scholar 

  28. Sayin B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO, et al. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm. 2008;363(1–2):139–48.

    Article  PubMed  CAS  Google Scholar 

  29. van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci. 2001;14(3):201–7.

    Article  PubMed  Google Scholar 

  30. Borchard G. Chitosans for gene delivery. Adv Drug Deliv Rev. 2001;52(2):145–50.

    Article  PubMed  CAS  Google Scholar 

  31. Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum KM, et al. Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 2001;8(14):1108–21.

    Article  PubMed  CAS  Google Scholar 

  32. Bonferoni MC, Sandri G, Rossi S, Ferrari F, Caramella C. Chitosan and its salts for mucosal and transmucosal delivery. Expert Opin Drug Deliv. 2009;6(9):923–39.

    Article  PubMed  CAS  Google Scholar 

  33. Li YH, Fan MW, Bian Z, Chen Z, Zhang Q, Yang HR. Chitosan–DNA microparticles as mucosal delivery system: synthesis, characterization and release in vitro. Chin Med J. 2005;118(11):936–41.

    PubMed  CAS  Google Scholar 

  34. Carvalho EL, Grenha A, Remunan-Lopez C, Alonso MJ, Seijo B. Mucosal delivery of liposome–chitosan nanoparticle complexes. Methods Enzymol. 2009;465:289–312.

    Article  PubMed  CAS  Google Scholar 

  35. Borges O, Silva M, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A. Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int Immunopharmacol. 2008;8(13–14):1773–80.

    Article  PubMed  CAS  Google Scholar 

  36. Dai H, Jiang X, Tan GC, Chen Y, Torbenson M, Leong KW, et al. Chitosan–DNA nanoparticles delivered by intrabiliary infusion enhance liver-targeted gene delivery. Int J Nanomedicine. 2006;1(4):507–22.

    Article  PubMed  CAS  Google Scholar 

  37. Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev. 2001;51(1–3):81–96.

    Article  PubMed  CAS  Google Scholar 

  38. Kim BG, Kang IJ. Evaluation of the effects of biodegradable nanoparticles on a vaccine delivery system using AFM, SEM, and TEM. Ultramicroscopy. 2008;108(10):1168–73.

    Article  PubMed  CAS  Google Scholar 

  39. Krauland AH, Leitner VM, Grabovac V, Bernkop-Schnurch A. In vivo evaluation of a nasal insulin delivery system based on thiolated chitosan. J Pharm Sci. 2006;95(11):2463–72.

    Article  PubMed  CAS  Google Scholar 

  40. Shimono N, Takatori T, Ueda M, Mori M, Higashi Y, Nakamura Y. Chitosan dispersed system for colon-specific drug delivery. Int J Pharm. 2002;245(1–2):45–54.

    Article  PubMed  CAS  Google Scholar 

  41. dos Santos KS, Coelho JF, Ferreira P, Pinto I, Lorenzetti SG, Ferreira EI, et al. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan. Int J Pharm. 2006;310(1–2):37–45.

    Article  PubMed  CAS  Google Scholar 

  42. Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY, et al. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials. 2008;29(12):1920–30.

    Article  PubMed  CAS  Google Scholar 

  43. Zhu B, Qie Y, Wang J, Zhang Y, Wang Q, Xu Y, et al. Chitosan microspheres enhance the immunogenicity of an Ag85B-based fusion protein containing multiple T-cell epitopes of Mycobacterium tuberculosis. Eur J Pharm Biopharm. 2007;66(3):318–26.

    Article  PubMed  CAS  Google Scholar 

  44. Yu JM, Li YJ, Qiu LY, Jin Y. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization. J Pharm Pharmacol. 2009;61(6):713–9.

    Article  PubMed  CAS  Google Scholar 

  45. Wilson B, Samanta MK, Santhi K, Kumar KP, Ramasamy M, Suresh B. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine. 2010;6(1):144–52.

    Article  PubMed  CAS  Google Scholar 

  46. Wang Q, Zhang L, Hu W, Hu ZH, Bei YY, Xu JY, et al. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery. Nanomedicine. 2010;6(2):371–81.

    Article  PubMed  CAS  Google Scholar 

  47. Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release. 2008;127(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  48. Dhawan S, Singla AK, Sinha VR. Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech. 2004;5(4):e67.

    Article  PubMed  Google Scholar 

  49. Bernkop-Schnurch A, Guggi D, Pinter Y. Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J Control Release. 2004;94(1):177–86.

    Article  PubMed  CAS  Google Scholar 

  50. Ferrari F, Rossi S, Bonferoni MC, Caramella C, Karlsen J. Characterization of rheological and mucoadhesive properties of three grades of chitosan hydrochloride. Farmaco. 1997;52(6–7):493–7.

    PubMed  CAS  Google Scholar 

  51. Wittaya-areekul S, Kruenate J, Prahsarn C. Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. Int J Pharm. 2006;312(1–2):113–8.

    Article  PubMed  CAS  Google Scholar 

  52. Moghaddam FA, Atyabi F, Dinarvand R. Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan–pHEMA core–shell nanoparticles. Nanomedicine. 2009;5(2):208–15.

    Article  PubMed  CAS  Google Scholar 

  53. Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol. 2010;56(3):290–9.

    Article  PubMed  CAS  Google Scholar 

  54. Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects—an update. J Pharm Pharmacol. 2001;53(8):1047–67.

    Article  PubMed  CAS  Google Scholar 

  55. Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces. 2007;59(1):24–34.

    Article  PubMed  CAS  Google Scholar 

  56. Li T, Shi XW, Du YM, Tang YF. Quaternized chitosan/alginate nanoparticles for protein delivery. J Biomed Mater Res A. 2007;83(2):383–90.

    PubMed  Google Scholar 

  57. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  58. Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery. J Control Release. 2002;78(1–3):15–24.

    Article  PubMed  CAS  Google Scholar 

  59. Mukherjee B, Santra K, Pattnaik G, Ghosh S. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int J Nanomedicine. 2008;3(4):487–96.

    Article  PubMed  CAS  Google Scholar 

  60. Qian F, Cui F, Ding J, Tang C, Yin C. Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization. Biomacromolecules. 2006;7(10):2722–7.

    Article  PubMed  CAS  Google Scholar 

  61. Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm. 2002;249(1–2):139–47.

    Article  PubMed  CAS  Google Scholar 

  62. Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan–insulin nanoparticles in diabetic rats. Int J Pharm. 2005;293(1–2):271–80.

    Article  PubMed  CAS  Google Scholar 

  63. Ma Z, Yeoh HH, Lim LY. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci. 2002;91(6):1396–404.

    Article  PubMed  CAS  Google Scholar 

  64. Takeda S, Ishthara K, Wakui Y, Amagaya S, Maruno M, Akao T, et al. Bioavailability study of glycyrrhetic acid after oral administration of glycyrrhizin in rats; relevance to the intestinal bacterial hydrolysis. J Pharm Pharmacol. 1996;48(9):902–5.

    Article  PubMed  CAS  Google Scholar 

  65. Ichikawa T, Ishida S, Sakiya Y, Sawada Y, Hanano M. Biliary excretion and enterohepatic cycling of glycyrrhizin in rats. J Pharm Sci. 1986;75(7):672–5.

    Article  PubMed  CAS  Google Scholar 

  66. Ishida S, Sakiya Y, Ichikawa T, Awazu S. Pharmacokinetics of glycyrrhetic acid, a major metabolite of glycyrrhizin, in rats. Chem Pharm Bull. 1989;37(9):2509–13.

    PubMed  CAS  Google Scholar 

  67. Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. I Int J Pharm. 2005;295(1–2):235–45.

    Article  CAS  Google Scholar 

  68. Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym. 2008;73:44–54.

    Article  CAS  Google Scholar 

  69. Jain D, Banerjee R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Mater Res B Appl Biomater. 2008;86(1):105–12.

    PubMed  Google Scholar 

  70. Lu E, Franzblau S, Onyuksel H, Popescu C. Preparation of aminoglycoside-loaded chitosan nanoparticles using dextran sulphate as a counterion. J Microencapsul. 2009;26(4):346–54.

    Article  PubMed  CAS  Google Scholar 

  71. Dudhani AR, Kosarajua SL. Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohydr Polym. 2010;81:243–51.

    Article  CAS  Google Scholar 

  72. Jintapattanakit A, Junyaprasert VB, Mao S, Sitterberg J, Bakowsky U, Kissel T. Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm. 2007;342(1–2):240–9.

    Article  PubMed  CAS  Google Scholar 

  73. Sadeghi AM, Dorkoosh FA, Avadi MR, Saadat P, Rafiee-Tehrani M, Junginger HE. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm. 2008;355(1–2):299–306.

    Article  PubMed  CAS  Google Scholar 

  74. Bayat A, Dorkoosh FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, et al. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int J Pharm. 2008;356(1–2):259–66.

    Article  PubMed  CAS  Google Scholar 

  75. Bayat A, Larijani B, Ahmadian S, Junginger HE, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. Nanomedicine. 2008;4(2):115–20.

    Article  PubMed  CAS  Google Scholar 

  76. Mao S, Bakowsky U, Jintapattanakit A, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J Pharm Sci. 2006;95(5):1035–48.

    Article  PubMed  CAS  Google Scholar 

  77. Sandri G, Bonferoni MC, Rossi S, Ferrari F, Boselli C, Caramella C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech. 2010;11(1):362–71.

    Article  PubMed  CAS  Google Scholar 

  78. Sandri G, Bonferoni MC, Rossi S, Ferrari F, Gibin S, Zambito Y, et al. Nanoparticles based on N-trimethylchitosan: evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models. Eur J Pharm Biopharm. 2007;65(1):68–77.

    Article  PubMed  CAS  Google Scholar 

  79. Snyman D, Hamman JH, Kotze AF. Evaluation of the mucoadhesive properties of N-trimethyl chitosan chloride. Drug Dev Ind Pharm. 2003;29(1):61–9.

    Article  PubMed  CAS  Google Scholar 

  80. Sadeghi AM, Dorkoosh FA, Avadi MR, Weinhold M, Bayat A, Delie F, et al. Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur J Pharm Biopharm. 2008;70(1):270–8.

    Article  PubMed  CAS  Google Scholar 

  81. Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31(3):267–85.

    Article  PubMed  Google Scholar 

  82. Gotoh T, Matsushima K, Kikuchi K. Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere. 2004;55(1):135–40.

    Article  PubMed  CAS  Google Scholar 

  83. Sezer AD, Akbuga J. Release characteristics of chitosan treated alginate beads: II. Sustained release of a low molecular drug from chitosan treated alginate beads. J Microencapsul. 1999;16(6):687–96.

    Article  PubMed  CAS  Google Scholar 

  84. Sezer AD, Akbuga J. Release characteristics of chitosan treated alginate beads: I. Sustained release of a macromolecular drug from chitosan treated alginate beads. J Microencapsul. 1999;16(2):195–203.

    Article  PubMed  CAS  Google Scholar 

  85. Tapia C, Ormazabal V, Costa E, Yazdani-Pedram M. Study of dissolution behavior of matrices tablets based on alginate–gelatin mixtures as prolonged diltiazem hydrochloride release systems. Drug Dev Ind Pharm. 2007;33(6):585–93.

    Article  PubMed  CAS  Google Scholar 

  86. Takka S, Gurel A. Evaluation of chitosan/alginate beads using experimental design: formulation and in vitro characterization. AAPS PharmSciTech. 2010;11(1):460–6.

    Article  PubMed  CAS  Google Scholar 

  87. Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol. 2007;7(8):2833–41.

    Article  PubMed  CAS  Google Scholar 

  88. Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules. 2007;8(1):146–52.

    Article  PubMed  CAS  Google Scholar 

  89. Sarmento B, Ferreira DC, Jorgensen L, van de Weert M. Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm. 2007;65(1):10–7.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, et al. Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm. 2010;393(1–2):212–8.

    PubMed  CAS  Google Scholar 

  91. Li J, Xiao H, Li J, Zhong Y. Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers. Int J Pharm. 2004;278(2):329–42.

    Article  PubMed  CAS  Google Scholar 

  92. Huang L, Xin J, Guo Y, Li J. A novel insulin oral delivery system assisted by cationic B-cyclodextrin polymers. J Appl Polym Sci. 2010;115:1371–9.

    Article  CAS  Google Scholar 

  93. Sonaje K, Chen YJ, Chen HL, Wey SP, Juang JH, Nguyen HN, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010;31(12):3384–94.

    Article  PubMed  CAS  Google Scholar 

  94. Lin YH, Sonaje K, Lin KM, Juang JH, Mi FL, Yang HW, et al. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J Control Release. 2008;132(2):141–9.

    Article  PubMed  CAS  Google Scholar 

  95. Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30(12):2329–39.

    Article  PubMed  CAS  Google Scholar 

  96. Wang T, Xu Q, Wu Y, Zeng A, Li M, Gao H. Quaternized chitosan (QCS)/poly (aspartic acid) nanoparticles as a protein drug-delivery system. Carbohydr Res. 2009;344(7):908–14.

    Article  PubMed  CAS  Google Scholar 

  97. Lin YH, Chang CH, Wu YS, Hsu YM, Chiou SF, Chen YJ. Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy. Biomaterials. 2009;30(19):3332–42.

    Article  PubMed  CAS  Google Scholar 

  98. Li Y, Wang HY, Cho CH. Association of heparin with basic fibroblast growth factor, epidermal growth factor, and constitutive nitric oxide synthase on healing of gastric ulcer in rats. J Pharmacol Exp Ther. 1999;290(2):789–96.

    PubMed  CAS  Google Scholar 

  99. Lin CC, Lin CW. Preparation of N, O-carboxymethyl chitosan nanoparticles as an insulin carrier. Drug Deliv. 2009;16(8):458–64.

    Article  PubMed  CAS  Google Scholar 

  100. Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW. A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release. 2004;96(2):285–300.

    Article  PubMed  CAS  Google Scholar 

  101. Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules. 2009;10(5):1253–8.

    Article  PubMed  CAS  Google Scholar 

  102. Maestrelli F, Garcia-Fuentes M, Mura P, Alonso MJ. A new drug nanocarrier consisting of chitosan and hydroxypropylcyclodextrin. Eur J Pharm Biopharm. 2006;63(2):79–86.

    Article  PubMed  CAS  Google Scholar 

  103. Stella VJ, Rajewski RA. Cyclodextrins: their future in drug formulation and delivery. Pharm Res. 1997;14(5):556–67.

    Article  PubMed  CAS  Google Scholar 

  104. Krauland AH, Alonso MJ. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int J Pharm. 2007;340(1–2):134–42.

    Article  PubMed  CAS  Google Scholar 

  105. Trapani A, Garcia-Fuentes M, Alonso MJ. Novel drug nanocarriers combining hydrophilic cyclodextrins and chitosan. Nanotechnology. 2008;19:185101.

    Article  PubMed  CAS  Google Scholar 

  106. Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, et al. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm. 2010;75(1):26–32.

    Article  PubMed  CAS  Google Scholar 

  107. Roldo M, Hornof M, Caliceti P, Bernkop-Schnurch A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur J Pharm Biopharm. 2004;57(1):115–21.

    Article  PubMed  CAS  Google Scholar 

  108. Bernkop-Schnurch A, Hornof M, Guggi D. Thiolated chitosans. Eur J Pharm Biopharm. 2004;57(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  109. Martien R, Loretz B, Thaler M, Majzoob S, Bernkop-Schnurch A. Chitosan–thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery? J Biomed Mater Res A. 2007;82(1):1–9.

    PubMed  Google Scholar 

  110. Bravo-Osuna I, Millotti G, Vauthier C, Ponchel G. In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly(isobutyl cyanoacrylate) core-shell nanoparticles. Int J Pharm. 2007;338(1–2):284–90.

    Article  PubMed  CAS  Google Scholar 

  111. Bravo-Osuna I, Schmitz T, Bernkop-Schnurch A, Vauthier C, Ponchel G. Elaboration and characterization of thiolated chitosan-coated acrylic nanoparticles. Int J Pharm. 2006;316(1–2):170–5.

    Article  PubMed  CAS  Google Scholar 

  112. Bravo-Osuna I, Ponchel G, Vauthier C. Tuning of shell and core characteristics of chitosan-decorated acrylic nanoparticles. Eur J Pharm Sci. 2007;30(2):143–54.

    Article  PubMed  CAS  Google Scholar 

  113. Bravo-Osuna I, Vauthier C, Chacun H, Ponchel G. Specific permeability modulation of intestinal paracellular pathway by chitosan–poly(isobutylcyanoacrylate) core–shell nanoparticles. Eur J Pharm Biopharm. 2008;69(2):436–44.

    Article  PubMed  CAS  Google Scholar 

  114. Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G. Mucoadhesion mechanism of chitosan and thiolated chitosan–poly(isobutyl cyanoacrylate) core–shell nanoparticles. Biomaterials. 2007;28(13):2233–43.

    Article  PubMed  CAS  Google Scholar 

  115. Lindmark T, Kimura Y, Artursson P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther. 1998;284(1):362–9.

    PubMed  CAS  Google Scholar 

  116. Lindmark T, Nikkila T, Artursson P. Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. Pharmacol Exp Ther. 1995;275(2):958–64.

    CAS  Google Scholar 

  117. Rekha MR, Sharma CP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release. 2009;135(2):144–51.

    Article  PubMed  CAS  Google Scholar 

  118. Avadi MR, Sadeghi AM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, et al. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine. 2010;6(1):58–63.

    Article  PubMed  CAS  Google Scholar 

  119. Verbeken D, Dierckx S, Dewettinck K. Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol. 2003;63(1):10–21.

    Article  PubMed  CAS  Google Scholar 

  120. Skaugrud O, Hagen A, Borgersen B, Dornish M. Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnol Genet Eng Rev. 1999;16:23–40.

    PubMed  CAS  Google Scholar 

  121. Zhang J, Xia W, Liu P, Cheng Q, Tahirou T, Gu W, et al. Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs. 2010;8(7):1962–87.

    Article  PubMed  CAS  Google Scholar 

  122. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62(1):3–11.

    Article  PubMed  CAS  Google Scholar 

  123. Gades MD, Stern JS. Chitosan supplementation and fecal fat excretion in men. Obes Res. 2003;11(5):683–8.

    Article  PubMed  CAS  Google Scholar 

  124. Yang YM, Hu W, Wang XD, Gu XS. The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J Mater Sci Mater Med. 2007;18(11):2117–21.

    Article  PubMed  CAS  Google Scholar 

  125. Zhang H, Neau SH. In vitro degradation of chitosan by bacterial enzymes from rat cecal and colonic contents. Biomaterials. 2002;23(13):2761–6.

    Article  PubMed  CAS  Google Scholar 

  126. CarrenoGomez B, Duncan R. Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int J Pharm. 1997;148(2):231–40.

    Article  CAS  Google Scholar 

  127. Zhang C, Qu GW, Sun YJ, Yang T, Yao Z, Shen WB, et al. Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs. Eur J Pharm Sci. 2008;33(4–5):415–23.

    Article  PubMed  CAS  Google Scholar 

  128. Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release. 2005;103(3):643–53.

    Article  PubMed  CAS  Google Scholar 

  129. Mao SR, Shuai XT, Unger F, Wittmar M, Xie XL, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials. 2005;26(32):6343–56.

    Article  PubMed  CAS  Google Scholar 

  130. Opanasopit P, Aumklad P, Kowapradit J, Ngawhiranpat T, Apirakaramwong A, Rojanarata T. Effect of salt forms and molecular weight of chitosans on in vitro permeability enhancement in intestinal epithelial cells (Caco-2). Pharm Dev Technol. 2007;12(5):447–55.

    Article  PubMed  CAS  Google Scholar 

  131. ClinicalTrial.gov. A service of the U.S. National Institutes of Health. http://clinicaltrials.gov/ct2/results?term=chitosan.

  132. Le Garrec D, Gori S, Luo L, Lessard D, Smith DC, Yessine MA, et al. Poly(N-vinylpyrrolidone)-block-poly(D, L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release. 2004;99(1):83–101.

    Article  PubMed  CAS  Google Scholar 

  133. Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release. 2006;114(2):242–50.

    Article  PubMed  CAS  Google Scholar 

  134. Chen F, Zhang ZR, Yuan F, Qin X, Wang M, Huang Y. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm. 2008;349(1–2):226–33.

    Article  PubMed  CAS  Google Scholar 

  135. Aral C, Akbuga J. Preparation and in vitro transfection efficiency of chitosan microspheres containing plasmid DNA:poly(L-lysine) complexes. J Pharm Pharm Sci. 2003;6(3):321–6.

    PubMed  CAS  Google Scholar 

  136. Zheng F, Shi XW, Yang GF, Gong LL, Yuan HY, Cui YJ, et al. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study. Life Sci. 2007;80(4):388–96.

    Article  PubMed  CAS  Google Scholar 

  137. Hwang HY, Kim IS, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128(1):23–31.

    Article  PubMed  CAS  Google Scholar 

  138. Rajeshkumar S, Venkatesan C, Sarathi M, Sarathbabu V, Thomas J, Anver Basha K, et al. Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol. 2009;26(3):429–37.

    Article  PubMed  CAS  Google Scholar 

  139. Rajesh Kumar S, Ishaq Ahmed VP, Parameswaran V, Sudhakaran R, Sarath Babu V, Sahul Hameed AS. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol. 2008;25(1-2):47–56.

    Article  PubMed  CAS  Google Scholar 

  140. Loh JW, Yeoh G, Saunders M, Lim LY. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells. Toxicol Appl Pharmacol. 2010;249:148–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anumita Chaudhury or Surajit Das.

Additional information

Guest Editors: Michael Repka, Joseph Reo, Linda Felton, and Stephen Howard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhury, A., Das, S. Recent Advancement of Chitosan-Based Nanoparticles for Oral Controlled Delivery of Insulin and Other Therapeutic Agents. AAPS PharmSciTech 12, 10–20 (2011). https://doi.org/10.1208/s12249-010-9561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9561-2

KEY WORDS

Navigation