Skip to main content

Advertisement

Log in

Development and Evaluation of Chitosan-Coated Liposomes for Oral DNA Vaccine: The Improvement of Peyer’s Patch Targeting Using a Polyplex-Loaded Liposomes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to develop chitosan-coated and polyplex-loaded liposomes (PLLs) containing DNA vaccine for Peyer’s patch targeting. Plain liposomes carrying plasmid pRc/CMV-HBs were prepared by the reverse-phase evaporation method. Chitosan coating was carried out by incubation of the liposomal suspensions with chitosan solution. Main lipid components of liposomes were phosphatidylcholine/cholesterol. Sodium deoxycholate and dicetyl phosphate were used as negative charge inducers. The zeta potentials of plain liposomes were strongly affected by the pH of the medium. Coating with chitosan variably increased the surface charges of the liposomes. To increase the zeta potential and stability of the liposome, chitosan was also used as a DNA condensing agent to form a polyplex. The PLLs were coated with chitosan solution. In vivo study of PLLs was carried out in comparison with chitosan-coated liposomes using plasmid encoding green fluorescence protein as a reporter. A single dose of plasmid equal to 100 μg was intragastrically inoculated into BALB/c mice. The expression of green fluorescence protein (GFP) was detected after 24 h using a confocal laser scanning microscope. The signal of GFP was obtained from positively charged chitosan-coated liposomes but found only at the upper part of duodenum. With chitosan-coated PLL540, the signal of GFP was found throughout the intestine. Chitosan-coated PLL demonstrated a higher potential to deliver the DNA to the distal intestine than the chitosan-coated liposomes due to the increase in permanent positive surface charges and the decreased enzymatic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Montgomery DL, Ulmer JE, Donnelly JJ, Liu MA. DNA vaccines. Pharmacol Ther. 1997;74:195–205.

    Article  PubMed  CAS  Google Scholar 

  2. Dertzbaugh MT. Genetically engineered vaccines: an overview. Plasmid. 1998;39:100–13.

    Article  PubMed  CAS  Google Scholar 

  3. Nugent J, Po AL, Scott EM. Design and delivery of non-parenteral vaccines. J Clin Pharm Ther. 1998;23:257–85.

    PubMed  CAS  Google Scholar 

  4. Kirman JR, Seder RA. DNA vaccination: the answer to stable, protective T-cell memory? Curr Opin Immunol. 2003;15:471–6.

    Article  PubMed  CAS  Google Scholar 

  5. Takahashi I, Nochi T, Yuki Y, Kiyono H. New horizon of mucosal immunity and vaccines. Curr Opin Immunol. 2009;21:352–8.

    Article  PubMed  CAS  Google Scholar 

  6. Yeh P, Ellens H, Smith PL. Physiological considerations in the design of particulate dosage forms for oral vaccine delivery. Adv Drug Del Rev. 1998;34:123–33.

    Article  CAS  Google Scholar 

  7. Jain S, Singh P, Mishra V, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against hepatitis B. Immunol Lett. 2005;101:41–9.

    Article  PubMed  CAS  Google Scholar 

  8. Conacher M, Alexander J, Brewer JM. Oral immunization with peptide and protein antigens by formulation in lipid particles incorporating bile salts (bilosomes). Vaccine. 2001;19:2965–74.

    Article  PubMed  CAS  Google Scholar 

  9. Guliyeva Ü, Öner F, Özsoy S, Haziroglu R. Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. Eur J Pharm Biopharm. 2006;62:17–25.

    Article  PubMed  CAS  Google Scholar 

  10. Mann JFS, Scales HE, Sharkir E, Alexander J, Carter KC, Mullen AB, et al. Oral delivery of tetanus toxoid using particles significant systemic and mucosal immunity. Methods. 2006;38:90–5.

    Article  PubMed  CAS  Google Scholar 

  11. Mann JFS, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine. 2009;27:3643–9.

    Article  PubMed  CAS  Google Scholar 

  12. Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine. 2008;26:2225–33.

    Article  PubMed  CAS  Google Scholar 

  13. Page DT, Cudmore S. Innovations in oral gene delivery: challenge and potentials. DDT. 2001;6(2):92–101.

    PubMed  CAS  Google Scholar 

  14. Filion MC, Phillips NC. Major limitations in the use of cationic liposomes for DNA delivery. Int J Pharm. 1998;162:159–70.

    Article  CAS  Google Scholar 

  15. Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res. 2000;17:521–5.

    Article  PubMed  CAS  Google Scholar 

  16. Bivas-Benita M, Laloup M, Versteyhe S, Dewit J, de Braekeleer J, Jongert E, et al. Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. Int J Pharm. 2003;266:17–27.

    Article  PubMed  CAS  Google Scholar 

  17. Howard KA, Li XW, Somavarapu S, et al. Formulation of a microparticle carrier for oral polyplex-based DNA vaccines. Biochim Biophy Acta. 2004;1674:149–57.

    CAS  Google Scholar 

  18. Almofti MR, Harashima H, Shinohara Y, Almofti A, Baba Y, Kiwada H. Cationic liposome-mediated gene delivery: biophysical study and mechanism of internalization. Arch Biochem Biophys. 2003;410(2):246–53.

    Article  PubMed  Google Scholar 

  19. Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV, Selvamurugan N. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr Polym. 2010;79:1–8.

    Article  CAS  Google Scholar 

  20. Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release. 2005;102:373–81.

    Article  PubMed  CAS  Google Scholar 

  21. Prego C, Garcí M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery. J Control Release. 2005;101:151–62.

    Article  PubMed  CAS  Google Scholar 

  22. Van der Merwe SM, Verhoef JC, Verheijden JHM, Kotzé AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58:225–35.

    Article  PubMed  Google Scholar 

  23. Takeuchi H, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y. Effectiveness of submicron-sized, chitosan-coated liposomes in oral administration of peptide drugs. Int J Pharm. 2005;303:160–70.

    Article  PubMed  CAS  Google Scholar 

  24. Alpar HO, Somavarapua S, Atuahb KN, Bramwell VW. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv Drug Del Rev. 2005;57:411–43.

    Article  CAS  Google Scholar 

  25. Davis HL, Michel ML, Whalen RG. DNA-based immunization for hepatitis B induces continuous secretion of antigen and high levels of circulating antibody. Hum Mol Genetics. 1993;2:1847–51.

    Article  CAS  Google Scholar 

  26. Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carrier: synthesis, characterization and transfection efficiency. J Control Release. 2001;70:399–421.

    Article  PubMed  CAS  Google Scholar 

  27. Cócera M, López O, Coderch L, Parra JL, de la Maza A. Permeability investigations of phospholipid liposomes by adding cholesterol. Colloid Surf A. 2003;221:9–17.

    Article  Google Scholar 

  28. Moghimi SM, Patel HM. Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett. 1988;233(1):143–7.

    Article  PubMed  CAS  Google Scholar 

  29. Guo J, Ping Q, Jiang G, Huang L, Tong Y. Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm. 2003;260:167–73.

    Article  PubMed  CAS  Google Scholar 

  30. Mumper RJ, Wang J, Claspell JM, Rolland AP. Novel polymeric condensing carriers for gene delivery. Proc Int Symp Control Rel Bioact Mater. 1996;22:178–9.

    Google Scholar 

  31. Kiang T, Wen J, Lim HW, Leong KW. The effect of the degree of chitosan deacetylation on the efficacy of gene transfection. Biomaterials. 2004;25:5293–301.

    Article  PubMed  CAS  Google Scholar 

  32. Liu W, Sun S, Cao Z, Zhang X, Yao K, Lu WW, et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials. 2005;26(15):2705–11.

    Article  PubMed  CAS  Google Scholar 

  33. Takeuchi K, Ishihara K, Kawaura C, Noji M, Furuno T, Nakanishi M. Effect of zeta potential of cationic liposomes containing cationic cholesterol derivatives on gene transfection. FEBS Lett. 1996;397:207–9.

    Article  PubMed  CAS  Google Scholar 

  34. Bowman K, Sarkar R, Raut S, Leong KW. Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles. J Control Release. 2008;132:252–9.

    Article  PubMed  CAS  Google Scholar 

  35. Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89:151–65.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the Thailand Research Fund for financial support through the Royal Golden Jubilee Ph.D. Program (grant no. PHD/0222/2543). The authors wish to express their sincere thanks to the Molecular Immunology, Faculty of Allied Health Sciences, Thammasat University for partial support of the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ampol Mitrevej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Channarong, S., Chaicumpa, W., Sinchaipanid, N. et al. Development and Evaluation of Chitosan-Coated Liposomes for Oral DNA Vaccine: The Improvement of Peyer’s Patch Targeting Using a Polyplex-Loaded Liposomes. AAPS PharmSciTech 12, 192–200 (2011). https://doi.org/10.1208/s12249-010-9559-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9559-9

KEY WORDS

Navigation