Skip to main content

Advertisement

Log in

Polymeric Surfactant Based Etodolac Chewable Tablets: Formulation and In Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Etodolac (ET) is a nonsteroidal anti-inflammatory drug with proved potential antitumor and uric acid lowering effects. It shows dissolution rate-dependent bioavailability. This work was carried out to improve the dissolution rate of etodolac using three carriers of known potential to improve solubility and hence dissolution rate of poorly soluble drugs through coevaporation technique. The polymeric surfactant inutec, 2-hydroxypropyl-β-cyclodextrin, and tromethamine were used at three different drug/carrier ratios. The dissolution rate of ET at pH 1.2 and 6.8 is improved in all of the solid dispersion systems compared to that of the pure drug and physical mixtures. DSC of coevaporates at 1:5 drug/carrier ratio providing the fastest dissolution rate suggested loss of ET crystallinity which was further confirmed by X-ray diffraction. Inutec-based coevaporate was chosen for the formulation of ET chewable tablets. Chewable tablets (F3) that met the USP monograph specifications for ET tablets, with 86% dissolved amount within 15 min, was chosen for in vivo absorption study in comparison with pure ET-filled hard gelatin capsules. The results showed significantly higher mean C max and shorter mean T max (about 2 h earlier) and about 1.32-fold higher mean AUC0–24 values for the F3 chewable tablets compared to ET-filled capsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin A, Swarbrick J, Cammarta A. Physical pharmacy, physical chemical principles in the pharmaceutical sciences. 4th ed. Philadelphia: Lea and Febiger; 1993. p. 324–512.

    Google Scholar 

  2. Shargel L, Yu ABC. Applied biopharmaceutics and pharmacokinetics. 3rd ed. New York: Prentice-Hall International; 1993. p. 136–7.

    Google Scholar 

  3. Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res. 2002;19(7):921–5.

    Article  CAS  PubMed  Google Scholar 

  4. Friedrich H, Fussnegger B, Kolter K, Bodmeier R. Dissolution rate improvement of poorly water-soluble drugs obtained by adsorbing solutions of drugs in hydrophilic solvents onto high surface area carriers. Eur J Pharm Biopharm. 2006;62:171–7.

    Article  CAS  PubMed  Google Scholar 

  5. Biradar SV, Patil AR, Sudarsan GV, Pokharkar VB. A comparative study of approaches used to improve solubility of roxithromycin. Powder Technol. 2006;169:22–32.

    Article  CAS  Google Scholar 

  6. Van den Mooter G, Weuts I, De Ridder T, Blaton N. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int J Pharm. 2006;316:1–6.

    Article  PubMed  Google Scholar 

  7. Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 2007;341:26–34.

    Article  CAS  PubMed  Google Scholar 

  8. Rasenack N, Müller BW. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm Res. 2002;19(12):1894–900.

    Article  CAS  PubMed  Google Scholar 

  9. Zhong J, Shen Z, Yang Y, Chen J. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment. Int J Pharm. 2005;30:286–93.

    Article  Google Scholar 

  10. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  CAS  PubMed  Google Scholar 

  11. Brewster ME, Vandecruys R, Peeters J, Neeskens P, Verreck G, Loftsson T. Comparative interaction of 2-hydroxypropyl cyclodextrin and sulfobutylether-cyclodextrin with itraconazole: phase-solubility behavior and stabilization of supersaturated drug solutions. Eur J Pharm Sci. 2008;34(2–3):94–103.

    Article  CAS  PubMed  Google Scholar 

  12. Mäntylä A, Rautio J, Nevalainen T, Keski-Rahkonen P, Vepsälainen J, Järvinen T. Design, synthesis and in vitro evaluation of novel water-soluble prodrugs of buparvaquone. Eur J Pharm Sci. 2004;23:151–8.

    Article  PubMed  Google Scholar 

  13. Zu YG, Li QY, Fu YJ, Wang W. Synthesis and cytotoxicity of water soluble quaternary salt derivatives of camptothecin. Bioorg Med Chem Lett. 2004;14:4023–6.

    Article  CAS  PubMed  Google Scholar 

  14. Balfour JA, Buckley MM. Etodolac a reappraisal of its pharmacology and therapeutic use in rheumatic diseases and pain states. Drugs. 1991;42:274–99.

    Article  CAS  PubMed  Google Scholar 

  15. Reynolds JEF. Martindale, the extra pharmacopoeia. 31st ed. London: Royal Pharmaceutical Society; 1996.

    Google Scholar 

  16. Maccagno A, Di Giorgio E, Romanowicz A. Effectiveness of etodolac (Lodine) compared with naproxen in patients with acute gout. Curr Med Res Opin. 1991;12(7):423–9.

    CAS  PubMed  Google Scholar 

  17. Mullane JF. Etodolac for treatment of gout, United States Patent 4663345, 1987.

  18. Okamotoa A, Shirakawaab T, Bitoc T, Shigemurab K, Hamadad K, Gotohe A, et al. Etodolac, a selective cyclooxygenase-2 inhibitor, induces upregulation of e-cadherin and has antitumor effect on human bladder cancer cells in vitro and in vivo. Urology. 2008;71(1):156–60.

    Article  Google Scholar 

  19. Tsuneoka N, Tajima Y, Kitazato A, Fukuda K, Kitajima T, Kuroki T, et al. Chemopreventative effect of a cyclooxygenase-2-specific inhibitor (etodolac) on chemically induced biliary carcinogenesis in hamsters. Carcinogenesis. 2005;26(2):465–9.

    Article  CAS  PubMed  Google Scholar 

  20. Glaser KA. Cyclooxygenase selectivity and NSAIDs: cyclooxygenase-2 selectivity of etodolac (Lodine). Inflammopharmacol. 1995;3:335–45.

    Article  CAS  Google Scholar 

  21. Raghuvanshi RS, Rampal A, Sen H. Extended release formulation of etodolac, United States Patent 6586005, 2003.

  22. Allen LV, Popovich NG, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems, chapter 8. 8th ed. Baltimore: Lippincott Williams & Wilkins; 2005. p. 230.

    Google Scholar 

  23. Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–9.

    CAS  PubMed  Google Scholar 

  24. Javadzadeh Y, Siahi-Shadbad MR, Barzegar-Jalali M, Nokhodchi A. Enhancement of dissolution rate of piroxicam using liquisolid compacts. Farmaco. 2005;60:361–5.

    Article  CAS  PubMed  Google Scholar 

  25. FDA. Guidance of industry, food-effect bioavailability and bioequivalence studies. Rockville: FDA; 2002.

    Google Scholar 

  26. Barakat NS. Enhanced oral bioavailability of etodolac by self-emulsifying systems: in-vitro and in-vivo evaluation. J Pharm Pharmacol. 2010;62(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  27. Brittain HG. Analytical profiles of drug substances and excipients, vol 29. San Diego: Academic; 2002. p. 111.

    Google Scholar 

  28. Herzfeldi C, Kummel R. Dissociation constants, solubilities and dissolution rates of some selected nonsteroidal anti inflammatories. Drug Dev Ind Pharm. 1983;9:767–93.

    Article  Google Scholar 

  29. Najib NM, Suleiman MS. Characterization of a diflunisal polyethylene glycol solid dispersion system. Int J Pharm. 1989;51:225–32.

    Article  CAS  Google Scholar 

  30. Abdelkader H, Abdallah OY, Salem HS. Comparison of the effect of tromethamine and polyvinylpyrrolidone on dissolution properties and analgesic effect of nimesulide. AAPS PharmSciTech. 2007;8(3):E1–8.

    Article  Google Scholar 

  31. Mura P, Zerrouk N, Mennini N, Maestrelli F, Chemtob C. Development and characterization of naproxen–chitosan solid systems with improved drug dissolution properties. Eur J Pharm Sci. 2003;19(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  32. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  33. Mishra PR, Al Shaal L, Müller RH, Keck CM. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm. 2009;371(1-2):182–9.

    Article  CAS  PubMed  Google Scholar 

  34. Habib W, Khankari R, Hontz J. Fast-dissolving drug delivery systems, critical review in therapeutics. Drug Carrier Systems. 2000;17(1):61–72.

    CAS  Google Scholar 

  35. Clarke A, Brewer F, Johnson ES, Kelly EA. Proceeding of the 122nd annual meeting of the American Neurological Association, 1997. M69.

Download references

Acknowledgments

Authors are grateful to Beneo Biobased Chemicals, Belgium and JRS CO., Germany for supplying us with the necessary chemicals to participate in the field of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doaa Ahmed El-Setouhy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, M.M., EL-Nabarawi, M., El-Setouhy, D.A. et al. Polymeric Surfactant Based Etodolac Chewable Tablets: Formulation and In Vivo Evaluation. AAPS PharmSciTech 11, 1730–1737 (2010). https://doi.org/10.1208/s12249-010-9548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9548-z

Key words

Navigation