Skip to main content
Log in

Application of In Situ Polymerization for Design and Development of Oral Drug Delivery Systems

  • Review Article
  • Theme: Advanced Technologies for Oral Controlled Release
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Although preformed polymers are commercially available for use in the design and development of drug delivery systems, in situ polymerization has also been employed. In situ polymerization affords the platform to tailor and optimize the drug delivery properties of polymers. This review brings to light the benefits of in situ polymerization for oral drug delivery and the possibilities it provides to overcome the challenges of oral route of administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Chandy T, Sharma CP. Chitosan matrix for oral sustained delivery of ampicillin. Biomaterials. 1993;14(12):939–44.

    Article  CAS  PubMed  Google Scholar 

  2. Ilium L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15(9):1326–31.

    Article  Google Scholar 

  3. Tozaki H, Odoriba T, Okada N, Fujita T, Terabe A, Suzuki T, et al. Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. J Control Release. 2002;82(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  4. Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, et al. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm. 2010;75(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  5. Gombotz WR, Wee S. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31(3):267–85.

    Article  CAS  PubMed  Google Scholar 

  6. Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28(6):621.

    Article  PubMed  Google Scholar 

  7. Qurrat-ul-Ain, Sharma S, Khuller GK, Garg SK. Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects. J Antimicrob Chemother. 2003;51(4):931–8.

    Article  CAS  PubMed  Google Scholar 

  8. Rafati H, Coombes AGA, Adler J, Holland J, Davis SS. Protein-loaded poly(-lactide-co-glycolide) microparticles for oral administration: formulation, structural and release characteristics. J Control Release. 1997;43(1):89–102.

    Article  CAS  Google Scholar 

  9. Yin Win K, Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713–22.

    Article  Google Scholar 

  10. Chickering D, Jacob J, Mathiowitz E. Poly(fumaric-co-sebacic) microspheres as oral drug delivery systems. Biotechnol Bioeng. 1996;52(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  11. Furtado S, Abramson D, Burrill R, Olivier G, Gourd C, Bubbers E, et al. Oral delivery of insulin loaded poly(fumaric-co-sebacic) anhydride microspheres. Int J Pharm. 2008;347(1–2):149–55.

    Article  CAS  PubMed  Google Scholar 

  12. Crespy D, Landfester K. Preparation of nylon 6 nanoparticles and nanocapsules by two novel miniemulsion/solvent displacement hybrid techniques. Macromol Chem Phys. 2007;208(5):457–66.

    Article  CAS  Google Scholar 

  13. Zhang H, Li S, Branford White CJ, Ning X, Nie H, Zhu L. Studies on electrospun nylon-6/chitosan complex nanofiber interactions. Electrochim Acta. 2009;54(24):5739–45.

    Article  CAS  Google Scholar 

  14. Choy YB, Choi H, Kim K. Uniform ethyl cellulose microspheres of controlled sizes and polymer viscosities and their drug-release profiles. J Appl Polym Sci. 2009;112(2):850–7.

    Article  CAS  Google Scholar 

  15. Conti S, Maggi L, Segale L, Ochoa Machiste E, Conte U, Grenier P, et al. Matrices containing NaCMC and HPMC: 1. Dissolution performance characterization. Int J Pharm. 2007;333(1–2):136–42.

    Article  CAS  PubMed  Google Scholar 

  16. Fu XC, Wang GP, Liang WQ, Chow MSS. Prediction of drug release from HPMC matrices: effect of physicochemical properties of drug and polymer concentration. J Control Release. 2004;95(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  17. Hussain MA, Badshah M, Iqbal MS, Tahir MN, Tremel W, Bhosale SV, et al. HPMC-salicylate conjugates as macromolecular prodrugs: design, characterization, and nano-rods formation. J Polym Sci, A: Polym Chem. 2009;47(16):4202–8.

    Article  CAS  Google Scholar 

  18. Eerikäinen H, Peltonen L, Raula J, Hirvonen J, Kauppinen E. Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method. AAPS PharmSciTech. 2004;5(4):129–37.

    Article  Google Scholar 

  19. Mehta KA, Kislalioglu MS, Phuapradit W, Malick AW, Shah NH. Release performance of a poorly soluble drug from a novel, Eudragit®-based multi-unit erosion matrix. Int J Pharm. 2001;213(1–2):7–12.

    Article  CAS  PubMed  Google Scholar 

  20. Mahkam M. New terpolymers as hydrogels for oral protein delivery application. J Drug Target. 2009;17(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  21. Ramanan RMK, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol Prog. 2006;22(1):118–25.

    Article  CAS  PubMed  Google Scholar 

  22. Lu S, Anseth KS. Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J Control Release. 1999;57(3):291–300.

    Article  CAS  PubMed  Google Scholar 

  23. Krause H, Schwarz A, Rohdewald P. Interfacial polymerization. A useful method for the preparation of polymethylcyanoacrylate nanoparticles. Drug Dev Ind Pharm. 1986;12(4):527–52.

    Article  CAS  Google Scholar 

  24. Krauel K, Davies NM, Hook S, Rades T. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. J Control Release. 2005;106(1–2):76–87.

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Lee H, Hyung W, Park S, Haam S. Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J Microencapsul Micro Nano Carriers. 2006;23(2):203–12.

    CAS  Google Scholar 

  26. Ward JH, Peppas NA. Preparation of controlled release systems by free-radical UV polymerizations in the presence of a drug. J Control Release. 2001;71(2):183–92.

    Article  CAS  PubMed  Google Scholar 

  27. Elvira C, Mano JF, San Román J, Reis RL. Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials. 2002;23(9):1955–66.

    Article  CAS  PubMed  Google Scholar 

  28. Mesiha MS, Sidhom MB, Fasipe B. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles. Int J Pharm. 2005;288(2):289–93.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Z, Feng S. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials. 2006;27(2):262–70.

    Article  PubMed  Google Scholar 

  30. Gavini E, Mariani A, Rassu G, Bidali S, Spada G, Bonferoni MC, et al. Frontal polymerization as a new method for developing drug controlled release systems (DCRS) based on polyacrylamide. Eur Polym J. 2009;45(3):690–9.

    Article  CAS  Google Scholar 

  31. Yu H, Grainger DW. Modified release of hydrophilic, hydrophobic and peptide agents from ionized amphiphilic gel networks. J Control Release. 1995;34(2):117–27.

    Article  CAS  Google Scholar 

  32. Peppas NA, Keys KB, Torres-Lugo M, Lowman AM. Poly(ethylene glycol)-containing hydrogels in drug delivery. J Control Release. 1999;62(1–2):81–7.

    Article  CAS  PubMed  Google Scholar 

  33. Madsen F, Peppas NA. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition. Biomaterials. 1999;20(18):1701–8.

    Article  CAS  PubMed  Google Scholar 

  34. Morishita M, Lowman AM, Takayama K, Nagai T, Peppas NA. Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers. J Control Release. 2002;81(1–2):25–32.

    Article  CAS  PubMed  Google Scholar 

  35. Torres-Lugo M, García M, Record R, Peppas NA. pH-sensitive hydrogels as gastrointestinal tract absorption enhancers: transport mechanisms of salmon calcitonin and other model molecules using the caco-2 cell model. Biotechnol Prog. 2002;18(3):612–6.

    Article  CAS  PubMed  Google Scholar 

  36. Nakamura K, Murray RJ, Joseph JI, Peppas NA, Morishita M, Lowman AM. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Control Release. 2004;95(3):589–99.

    Article  CAS  PubMed  Google Scholar 

  37. Foss AC, Peppas NA. Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with caco-2 cultures. Eur J Pharm Biopharm. 2004;57(3):447–55.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Z, Feng S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)–tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 2006;27(21):4025–33.

    Article  CAS  PubMed  Google Scholar 

  39. Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, Nunthanid J, Luangtana-anan M, Sriamornsak P. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process. Eur J Pharm Biopharm. 2008;69(3):1004–13.

    Article  CAS  PubMed  Google Scholar 

  40. Blanchette J, Peppas NA. Oral chemotherapeutic delivery: design and cellular response. Ann Biomed Eng. 2005;33(2):142–9.

    Article  PubMed  Google Scholar 

  41. Mayo-Pedrosa M, Alvarez-Lorenzo C, Lacík I, Martinez-Pacheco R, Concheiro A. Sustained release pellets based on poly(N-isopropyl acrylamide): matrix and in situ photopolymerization-coated systems. J Pharm Sci. 2007;96(1):93–105.

    Article  CAS  PubMed  Google Scholar 

  42. Mayo-Pedrosa M, Cachafeiro-Andrade N, Alvarez-Lorenzo C, Martinez-Pacheco R, Concheiro A. In situ photopolymerization-coated pellets for pH-dependent drug delivery. Eur Polym J. 2008;44(8):2629–38.

    Article  CAS  Google Scholar 

  43. Watnasirichaikul S, Davies N, Rades T, Tucker I. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res. 2000;17(6):684–9.

    Article  CAS  PubMed  Google Scholar 

  44. Damgé C, Vranckx H, Balschmidt P, Couvreur P. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. J Pharm Sci. 1997;86(12):1403–9.

    Article  PubMed  Google Scholar 

  45. Watnasirichaikul S, Rades T, Tucker I, Davies N. In-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsion. J Pharm Pharmacol. 2002;54(8):473–80.

    Article  CAS  PubMed  Google Scholar 

  46. Tredici A, Pecchini R, Sliepcevich A, Morbidelli M. Polymer blends by self-propagating frontal polymerization. J Appl Polym Sci. 1998;70(13):2695–702.

    Article  CAS  Google Scholar 

  47. Chekanov Y, Arrington D, Brust G, Pojman JA. Frontal curing of epoxy resins: comparison of mechanical and thermal properties to batch-cured materials. J Appl Polym Sci. 1997;66(6):1209–16.

    Article  CAS  Google Scholar 

  48. Pojman JA, Gunn G, Patterson C, Owens J, Simmons C. Frontal dispersion polymerization. J Phys Chem B. 1998;102(20):3927–9.

    Article  CAS  Google Scholar 

  49. Proietti N, Capitani D, Cozzolino S, Valentini M, Pedemonte E, Princi E, et al. In situ and frontal polymerization for the consolidation of porous stones: a unilateral NMR and magnetic resonance imaging study. J Phys Chem B. 2006;110(47):23719–28.

    Article  CAS  PubMed  Google Scholar 

  50. Candau F, Selb J. Hydrophobically-modified polyacrylamides prepared by micellar polymerization. Adv Colloid Interface Sci. 1999;79(2–3):149–72.

    Article  CAS  Google Scholar 

  51. Kujawa P, Audibert-Hayet A, Selb J, Candau F. Compositional heterogeneity effects in multisticker associative polyelectrolytes prepared by micellar polymerization. J Polym Sci, A: Polym Chem. 2003;41(21):3261–74.

    Article  CAS  Google Scholar 

  52. Yu H, Grainger DW. Amphiphilic thermosensitive N-isopropylacrylamide terpolymer hydrogels prepared by micellar polymerization in aqueous media. Macromolecules. 1994;27(16):4554–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ndidi Ngwuluka.

Additional information

Guest Editors: Michael Repka, Joseph Reo, Linda Felton, and Stephen Howard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngwuluka, N. Application of In Situ Polymerization for Design and Development of Oral Drug Delivery Systems. AAPS PharmSciTech 11, 1603–1611 (2010). https://doi.org/10.1208/s12249-010-9535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9535-4

KEY WORDS

Navigation