Skip to main content
Log in

Improved Albendazole Dissolution Rate in Pluronic 188 Solid Dispersions

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Solids dispersions (SDs) have been proposed as an alternative to improve the dissolution rate of low solubility drugs. SDs containing albendazole (ABZ; 5, 10, 25, and 50% w/w) and Pluronic 188 (P 188) as hydrophilic carrier were formulated. The obtained SDs were assessed in comparison to physical mixtures (PMs). Drug–polymer interactions in solid state were investigated using Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analysis. No chemical interaction was found between ABZ and poloxamer. The dissolution profiles indicated that ABZ incorporated in SDs and PMs was rapidly released, reaching rapidly the steady state. Increased dissolution rates are usually observed at the highest polymer proportions. However, an opposite effect for SDs as well as for PMs was observed in the assays described here. The systems with the lowest P 188 percentages (SD4, SD3; PM4, PM3) tended to be more effective in increasing the ABZ dissolution rate. Such a result can be attributed to the fact that concentrated aqueous solutions of Poloxamer may form thermo-reversible gels. The physical–mechanical properties indicated that SDs possess improved flow and compacting properties compared to PMs. Thus, ABZ SDs would be more convenient for solid dosage form design and manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  2. Amidon GL, Lennernnas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug 410 product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  3. Georgarakis E, Sigalas MP, Avgoustakis K, Bikiaris D, Karava E. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug–polymer interactions. Eur J Pharm Biopharm. 2007;66:334–47.

    Article  PubMed  Google Scholar 

  4. Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. II. Absorption of fused conglomerates of chloramphenicol and urea in rabbits. Chem Pharm Bull. 1964;12:134–44.

    CAS  PubMed  Google Scholar 

  5. Levy G. Effect of particle size on dissolution and gastrointestinal absorption rates of pharmaceuticals. Am J Pharm Sci Support Public Health. 1963;135:78–92.

    CAS  PubMed  Google Scholar 

  6. Kanig JL. Properties of fused mannitol in compressed tablets. J Pharm Sci. 1964;53:188–92.

    Article  CAS  PubMed  Google Scholar 

  7. Janssens S, de Novoa Armas H, Roberts CJ, Van den Mooter G. Characterization of ternary solid dispersions of Itraconazole in polyethylene glycol 6000/polyvidone-vinylacetate 64 blends. Eur J Pharm Biopharm. 2008;69(3):1114–20.

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Michoel A, Van den Mooter G. Study of the phase behavior of polyethylene glycol 6000–itraconazole solid dispersions using DSC. Int J Pharm. 2004;272(1–2):181–7.

    Article  CAS  PubMed  Google Scholar 

  9. Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm. 2008;70(2):493–9.

    Article  CAS  PubMed  Google Scholar 

  10. Marín MT, Margarit MV, Salcedo GE. Characterization and solubility study of solid dispersions of flunarizine and polyvinylpyrrolidone. Farmaco. 2002;57(9):723–7.

    Article  PubMed  Google Scholar 

  11. Vasconcelos T, Sarmiento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75.

    Article  CAS  PubMed  Google Scholar 

  12. Collett JH, Popli H. Poloxamer. In: Kibbe AH, editor. Handbook of Pharmaceutical Excipients. London; 2000. p. 385–388.

  13. Zhai H, Li S, Andrews G, Jones D, Bella S, Walker G. Nucleation and growth in fluidised hot melt granulation. Powder Technol. 2009;189(2):230–7.

    Article  CAS  Google Scholar 

  14. Vilhelmsen T, Eliasen H, Schaefer T. Effect of a melt agglomeration process on agglomerates containing solid dispersions. Int J Pharm. 2005;303(1–2):132–42.

    Article  CAS  PubMed  Google Scholar 

  15. Martindale. The complete drug reference. In: Sweetman CS, editors. Pharmaceutical Press, 33rd edn. London; 2002. p. 30–32.

  16. Wen H, New RRC, Craig PS. Diagnosis and treatment of human hydatidosis. Br J Clin Pharm. 1993;35:565–74.

    CAS  Google Scholar 

  17. Del-Brutto Sotelo OH, Roman GC. Therapy for neurocysticercosis: a reappraisal. Clin Infect Dis. 1993;17:730–5.

    Google Scholar 

  18. Waller P. Global perspectives on nematode parasite control in livestock: the need to adopt alternatives to chemotherapy, with emphasis in biological control. Anim Health Res Rev. 2003;4:35–43.

    Article  PubMed  Google Scholar 

  19. Colley DG, LoVerde PT, Savioli L. Infectious disease. Medical helminthology in the 21st century. Science. 2001;293(5534):1437–8.

    Article  CAS  PubMed  Google Scholar 

  20. Alvarez L, Mottier L, Lanusse C. Drug transfer into target helmint parasites. Trends Parasitol. 2007;23(3):97–104.

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez Bruni S, Jones D, McKellar Q. Pharmacological approaches towards rationalizing the use of endoparasitic drugs in small animals. J Vet Pharmacol Ther. 2006;29(6):443–57.

    Article  PubMed  Google Scholar 

  22. Roberson E, Burke M. Evaluation of granulated fenbendazole as a treatment of helminth infection in dogs. J Am Vet Med Assoc. 1982;180:53–5.

    CAS  PubMed  Google Scholar 

  23. Jacobs D. Anthelmintics for dogs and cats. Int J Parasitol. 1987;17:511–8.

    Article  CAS  PubMed  Google Scholar 

  24. Edwards G, Breckenridge A. Clinical pharmacokinetics of anthelmintic drugs. Clin Pharm. 1988;15:67–93.

    CAS  Google Scholar 

  25. Jung H, Medina L, Garcia L, Fuentes I, Esparza MR. Absorption studies of albendazole and some physicochemical properties of the drug and its metabolite albendazole sulphoxide. J Pharm Pharmacol. 1998;50:43–8.

    CAS  PubMed  Google Scholar 

  26. Daniel-Mwambete K, Torrado S, Cuesta-Bandera C, Ponce-Gordo F, Torrado JJ. The effect of solubilization on the oral bioavailability of three benzimidazole carbamate drugs. Int J Pharm. 2004;272:29–36.

    Article  CAS  PubMed  Google Scholar 

  27. Vogt M, Kunath K, Deessman JB. Dissolution improvement of four poorly water soluble drugs by cogrinding with commonly used excipients. Eur J Pharm Biopharm. 2008;68(2):330–7.

    Article  CAS  PubMed  Google Scholar 

  28. Torrado S, Torrado JJ, Cardoniga R. Preparation, dissolution and characterization of albendazole solid dispersions. Int J Pharm. 1996;140:247–50.

    Article  CAS  Google Scholar 

  29. Evrard B et al. Oral bioavailability in sheep of albendazole from a suspension and from a solution containing hydroxypropyl-β-cyclodextrin. J Control Release. 2002;85(1–3):13. 45–50.

    Google Scholar 

  30. Palomares-Alonso F, Jung-Cook H, Pérez-Villanueva J, Piliado JC, Rodríguez-Morales S, Palencia-Hernández G, et al. Synthesis and in vitro cysticidal activity of new benzimidazole derivatives. Eur J Med Chem. 2009;44(4):1794–800.

    Article  CAS  PubMed  Google Scholar 

  31. Rivera JC, Yépez-Mulia L, Hernández-Campos A, Moreno-Esparza R, Castillo R, Navarrete-Vázquez G, et al. Biopharmaceutic evaluation of novel anthelmintic (1H-benzimidazol-5(6)-yl) carboxamide derivatives. Int J Pharm. 2007;343:159–65.

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt PC, Rubensdorfer P. Evaluation of Ludipress as a ‘Multipurpose Excipient’ for direct compression. Part I: powder characteristics and tableting properties. Drug Dev Ind Pharm. 1994;20(18):2899–925.

    Article  CAS  Google Scholar 

  33. Lantz RJ, Schwartz JB. Mixing. In: Lieberman HA, Lachman L, Schwartz JB, editors. Pharmaceutical dosage form: tablets, vol. 2. New York: Marcel Dekker; 1990.

    Google Scholar 

  34. Maskarinek SA, Hannig J, Lee RC, Lee KY. Direct observation of poloxamer 188 insertion into lipid monolayers. Biophys J. 2002;82:1453–9.

    Article  Google Scholar 

  35. Chen Y, Zhang GGZ, Neilly J, Marsh K, Mawhinney D, Sanzgiri YD. Enhancing the bioavailability of ABT-963 using solid dispersion containing pluronic F-68. Int J Pharm. 2004;286:69–80.

    Article  CAS  PubMed  Google Scholar 

  36. Nanjawade BK, Manvi FV, Manjappa AS. In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release. 2007;122(2):119–34.

    Article  CAS  PubMed  Google Scholar 

  37. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of Poloxamernext term 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23:12–25.

    Article  Google Scholar 

  38. Peppas NA, Sahlin JJ. A simple equation for description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.

    Article  CAS  Google Scholar 

  39. Ritger PL, Peppas NA. A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  40. Andreetta HA. Fármacos de acción prolongada: mecanismos de liberación. Usos de distintos modelos. Lat Am J Pharm. 2003;22(4):355–64.

    CAS  Google Scholar 

  41. Kabanov KV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82:189–212.

    Article  CAS  PubMed  Google Scholar 

  42. Jones MC, Leroux JC. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.

    Article  CAS  PubMed  Google Scholar 

  43. Wells J. Pharmaceutical preformulation: physical chemical properties of drug substances. In: Aulton ME, editor. Pharmaceutics. The science of dosage form design. London: Churchill-Livington; 2007.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Consejo Nacional de Investigaciones Cientificas y Técnicas de la República Argentina (CONICET). Silvina Castro has a fellowship of CONICET.

The authors especially thank Dario O. Weitmann, Business Coordinator BCS in BASF Argentina S.A for the Poloxamer samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago D. Palma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, S.G., Bruni, S.S., Lanusse, C.E. et al. Improved Albendazole Dissolution Rate in Pluronic 188 Solid Dispersions. AAPS PharmSciTech 11, 1518–1525 (2010). https://doi.org/10.1208/s12249-010-9517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9517-6

Key words

Navigation