Skip to main content
Log in

Improvement of Dissolution Behavior for Poorly Water-Soluble Drug by Application of Cyclodextrin in Extrusion Process: Comparison between Melt Extrusion and Wet Extrusion

  • Research Article
  • Theme: Advanced Technologies for Oral Controlled Release
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to improve dissolution behavior of poorly water-soluble drugs by application of cyclodextrin in extrusion processes, which were melt extrusion process and wet extrusion process. Indomethacin (IM) was employed as a model drug. Extrudates containing IM and 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) in 1:1 w/w ratio were manufactured by both melt extrusion process and wet extrusion process. In vitro drug release properties of IM from extrudates and physiochemical properties of extrudates were investigated. The dissolution rates of IM from extrudates manufactured by melt extrusion and wet extrusion with HP-β-CyD were significantly higher than that of the physical mixture of IM and HP-β-CyD. In extrudate manufactured by melt extrusion, γ-form of IM changed to amorphous completely during melt extrusion due to heating above melting point of IM. On the other hand, in extrudate manufactured by wet extrusion, γ-form of IM changed to amorphous partially due to interaction between IM and HP-β-CyD and mechanical agitating force during process. Application of HP-β-CyD in extrusion process is useful for the enhancement of dissolution rate for poorly water-soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thanos CG, Liu Z, Goddard M, Reineke J, Bailey N, Cross M, et al. Enhancing the oral bioavailability of the poorly soluble drug dicumarol with a bioadhesive polymer. J Pharm Sci. 2003;92:1677–89.

    Article  CAS  PubMed  Google Scholar 

  2. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88:1058–66.

    Article  CAS  PubMed  Google Scholar 

  3. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  CAS  PubMed  Google Scholar 

  4. Szejtli J. Cyclodextrin technology. Dordrecht: Kluwer; 1988.

    Google Scholar 

  5. Duchêne D. New trends in cyclodextrins and derivatives. Paris: Editions de Santé; 1991.

    Google Scholar 

  6. Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull. 2004;52(8):900–15.

    Article  CAS  PubMed  Google Scholar 

  7. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98:2045–76.

    Article  CAS  PubMed  Google Scholar 

  8. Uekama K, Hirayama F, Arima H. Recent aspect of cyclodextrin-based drug delivery system. J Incl Phenom Macrocycl Chem. 2006;56:3–8.

    Article  CAS  Google Scholar 

  9. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past present and future. Nat Rev. 2004;3:1023–35.

    CAS  Google Scholar 

  10. Pitha J, Milecki J, Fales H, Pannell L, Uekama K. Hydroxypropyl- β-cyclodextrin: preparation and characterization; effects on solubility of drugs. Int J Pharm. 1986;29:73–82.

    Article  CAS  Google Scholar 

  11. Yoshida A, Yamamoto M, Itoh T, Irie T, Hirayama F, Uekama K. Utility of 2-hydroxypropyl-beta-cyclodextrin in an intramuscular injectable preparation of nimodipine. Chem Pharm Bull. 1990;38(1):176–9.

    CAS  PubMed  Google Scholar 

  12. Loftsson T, Ólafsdóttir BJ. The effect of 2-hydroxypropyl-β-cyclodextrin on the simultaneous dissolution and degradation of chlorambucil. Int J Pharm. 1990;66:289–92.

    Article  CAS  Google Scholar 

  13. Hirayama F, Wang Z, Uekama K. Effect of 2-hydroxypropyl-β-cyclodextrin on crystallization and polymorphic transition of nifedipine in solid state. Pharm Res. 1994;11:1766–70.

    Article  CAS  PubMed  Google Scholar 

  14. Hirayama F, Usami M, Kimura K, Uekama K. Crystallization and polymorphic transition behavior of chloramphenicol palmitate in 2-hydroxypropyl-β-cyclodextrin matrix. Eur J Pharm Sci. 1997;5:23–30.

    Article  CAS  Google Scholar 

  15. Kimura K, Hirayama F, Arima H, Uekama K. Solid-state 13C nuclear magnetic resonance spectroscopic study on amorphous solid complexes of tolbutamide with 2-hydroxypropyl-α- and -β-cyclodextrins. Pharm Res. 1999;16:1729–34.

    Article  CAS  PubMed  Google Scholar 

  16. Hicks DC, Freese HL. Extrusion and spheronizing equipment. In: Ghebre-Sellassie I, editor. Pharmaceutical pelletization technology. New York: Marcel Dekker; 1989. p. 71–100.

    Google Scholar 

  17. Faubion JM, Hoseney RC, Seib PA. Functionality of grain components in extrusion. Cereal Foods World. 1982;27:212–6.

    Google Scholar 

  18. Sokhey AS, Kollengode AN, Hanna MA. Screw configuration effects on corn starch expansion during extrusion. J Food Sci. 1994;59:895–8.

    Article  Google Scholar 

  19. Lefebvre C, Brazier M, Robert H, Guyot-Hermann AM. Solid dispersions why and how? Industrial aspect. STP Pharma. 1985;4:300–22.

    Google Scholar 

  20. Gamlen MJ, Eardley C. Continuous extrusion using a Baker Perkins MP50 (multipurpose) extruder. Drug Dev Ind Pharm. 1986;12:1701–13.

    Article  CAS  Google Scholar 

  21. Kleinebudde P, Lindner H. Experiments with an instrumented twin-screw extruder using a single-step granulation/extrusion process. Int J Pharm. 1993;94:49–58.

    Article  CAS  Google Scholar 

  22. Schroeder R, Steffens KJ. A new system for continuous wet granulation. Pharm Ind. 2002;64:283–8.

    CAS  Google Scholar 

  23. Lindberg NO, Tufvesson C, Olbjer L. Extrusion of an effervescent granulation with twin screw extruder, Baker Perkins MPF 50 D. Drug Dev Ind Pharm. 1987;13:1891–913.

    Article  CAS  Google Scholar 

  24. Lindberg NO. Some experiences of continuous wet granulation. Acta Pharm Suec. 1988;25:239–46.

    CAS  Google Scholar 

  25. Lindberg NO, Tufvesson C, Holm P, Olbjer L. Extrusion of an effervescent granulation with twin screw extruder, Baker Perkins MPF 50 D. Influence on intragranular porosity and liquid saturation. Drug Dev Ind Pharm. 1988;14:1791–8.

    Article  CAS  Google Scholar 

  26. Rambali B, Verreck G, Baert L, Massart DL. Itraconazole formulation studies of the melt-extrusion process with mixture design. Drug Dev Ind Pharm. 2003;29:641–52.

    Article  CAS  PubMed  Google Scholar 

  27. Fukuda M, Miller DA, Peppas NA, McGinity JW. Influence of sulfobutyl ether β-cyclodextrin (Captisol®) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion. Int J Pharm. 2008;350:188–96.

    Article  CAS  PubMed  Google Scholar 

  28. Otsuka M, Kato F, Matsuda Y. Comparative evaluation of the degree of indomethacin crystallinity by chemoinfometrical fourie-transformed near-infrared spectroscopy and conventional powder X-ray diffractiometry phase solubility techniques. AAPS PharmSci. 2000;2(1):9.

    Google Scholar 

  29. Higuchi T, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–22.

    CAS  Google Scholar 

  30. Hoshino T, Tagawa Y, Hirayama F, Otagiri M, Uekama K. Inclusion complexation of indomethacin and its related compounds with cyclodextrin in aqueous solution. Yakugaku Zasshi. 1982;102:1184–90.

    CAS  Google Scholar 

  31. Backensfeld T, Müller BW, Kolter K. Interaction of NSA with cyclodextrins and hydroxypropyl cyclodextrin derivatives. Int J Pharm. 1991;74:85–93.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENT

The authors are grateful to Ms. Karin Matthée of Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University for helpful measurement of DSC. Hideki Yano expresses his appreciation to Daiichi Sankyo Co., LTD. for granting him a 1-year leave of absence to pursue these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kleinebudde.

Additional information

Guest Editors: Michael Repka, Joseph Reo, Linda Felton, and Stephen Howard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yano, H., Kleinebudde, P. Improvement of Dissolution Behavior for Poorly Water-Soluble Drug by Application of Cyclodextrin in Extrusion Process: Comparison between Melt Extrusion and Wet Extrusion. AAPS PharmSciTech 11, 885–893 (2010). https://doi.org/10.1208/s12249-010-9448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9448-2

KEY WORDS

Navigation