Skip to main content
Log in

Effect of Cholesterol on the Properties of Spray-Dried Lysozyme-Loaded Liposomal Powders

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The influence of cholesterol (Chol) in the liposomal bilayer on the properties of inhalable protein-loaded liposomal powders prepared by spray-drying technique was investigated. Lysozyme (LSZ) was used as a model protein. Feed solution for spray drying was prepared by direct mixing of aqueous solution of LSZ with mannitol solution and empty liposome dispersions composed of hydrogenated phosphatidylcholine and Chol at various molar ratios. The spray-dried powders were characterized with respect to morphology, thermal property, and crystallinity using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction, respectively. Most formulations gave slightly aggregated, spherical particles, and percentage yields of the spray-dried powders decreased with increasing Chol content. Degree of particle aggregation depended on the powder composition. The powders spontaneously formed liposomes which efficiently entrapped LSZ after reconstitution with HEPES buffered saline (HBS) at 37°C. Lysozyme entrapment efficiency and size distribution of the reconstituted liposomes were evaluated after the powders were reconstituted with HBS. Increasing Chol content resulted in a decrease in size of the reconstituted liposomes and an increase in entrapment efficiency of LSZ. These results correlated with thermal behaviors of the reconstituted liposomes. Biological activity of LSZ was not affected by the spray-drying process. It was also demonstrated that LSZ-loaded liposomal powders could be produced without the need to preload the LSZ into liposomes prior to spray-drying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Chol:

Cholesterol

DPPC:

Dipalmitoylphosphatidylcholine

DRV:

Dehydrated-rehydrated vesicles

DSC:

Differential scanning calorimetry

EE:

Entrapment efficiency

HBS:

HEPES buffered saline

HPC:

Hydrogenated soybean phosphatidylcholine

LSZ:

Lysozyme

M:

Mannitol

MMD:

Mass median diameter

PC:

Phosphatidylcholine

QPBCA:

QuantiPro bicinchoninic acid

SEM:

Scanning electron microscopy

T d :

Denaturation melting temperature

T m :

Phase transition temperature

XRPD:

X-ray powder diffraction

References

  1. Zeng XM, Martin GP, Marriott C. The controlled drug delivery to the lung. Int J Pharm. 1995;124:149–64. doi:10.1016/0378-5173(95)00104-Q.

    Article  CAS  Google Scholar 

  2. Huang Y-Y, Wang C-H. Pulmonary delivery of insulin by liposomal carriers. J Control Release. 2006;113:9–14. doi:10.1016/j.jconrel.2006.03.014.

    Article  CAS  PubMed  Google Scholar 

  3. Briscoe P, Caniggia I, Graves A, Benson B, Huang L, Tanswell AK et al. Delivery of superoxide dismutase to pulmonary epithelium via pH-sensitive liposomes. Am J Physiol. 1995;268:L374–80.

    CAS  PubMed  Google Scholar 

  4. Schreier H, Gonazales-Rothi RJ, Stecenko AA. Pulmonary delivery of liposomes. J Control Release. 1992;24:209–23. doi:10.1016/0168-3659(93)90180-D.

    Article  Google Scholar 

  5. Zaru M, Mourtas S, Klepetsanis P, Fadda AM, Antimisiaris SG. Liposomes for drug delivery to the lungs by nebulization. Eur J Pharm Biopharm. 2007;67:655–66. doi:10.1016/j.ejpb.2007.04.005.

    Article  CAS  PubMed  Google Scholar 

  6. Niven RW, Carvajal MA, Schreier H. Nebulization of liposomes. III. The effects of operating conditions and local environment. Pharm Res. 1992;9:515–20. doi:10.1023/A:1015844430695.

    Article  CAS  PubMed  Google Scholar 

  7. Prime D, Atkins PJ, Slater A, Sumby B. Review of dry powder inhalers. Adv Drug Deliv Rev. 1997;26:51–8. doi:10.1016/S0169-409X(97)00510-3.

    Article  CAS  PubMed  Google Scholar 

  8. Kim C-K, Chung H-S, Lee M-K, Choi L-N, Kim M-H. Development of dried liposomes containing β-galactosidase for the digestion of lactose in milk. Int J Pharm. 1999;183:185–93. doi:10.1016/S0378-5173(99)00115-5.

    Article  CAS  PubMed  Google Scholar 

  9. Lo Y, Tsai J, Kuo J. Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J Control Release. 2004;94:259–72. doi:10.1016/j.jconrel.2003.09.019.

    Article  CAS  PubMed  Google Scholar 

  10. Kellaway IW, Farr SJ. Liposomes as drug delivery systems to the lung. Adv Drug Deliv Rev. 1990;5:149–61. doi:10.1016/0169-409X(90)90012-H.

    Article  CAS  Google Scholar 

  11. Cryan S-A. Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J. 2005;7(1):E20–40. doi:10.1208/aapsj070104.

    Article  CAS  PubMed  Google Scholar 

  12. Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev. 2006;58:1009–29. doi:10.1016/j.addr.2006.07.010.

    Article  CAS  PubMed  Google Scholar 

  13. Kikuchi H, Yamauchi H, Hirota S. A spray-drying method for mass production of liposomes. Chem Pharm Bull. 1991;39:1522–7.

    CAS  Google Scholar 

  14. Goldbach P, Brochart H, Stamm A. Spray-drying of liposomes for a pulmonary administration. II. Retention of encapsulated materials. Drug Dev Ind Pharm. 1993;19:2623–36. doi:10.3109/03639049309047205.

    Article  CAS  Google Scholar 

  15. Grenha A, Remunan-Lopez C, Carvalho ELS, Seijo B. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm. 2008;69:83–93. doi:10.1016/j.ejpb.2007.10.017.

    Article  CAS  PubMed  Google Scholar 

  16. Chougule MB, Padhi BK, Misra A. Development of spray dried liposomal dry powder inhaler of dapsone. AAPS PharmSciTech. 2008;9(1):47–53. doi:10.1208/s12249-007-9024-6.

    Article  PubMed  Google Scholar 

  17. Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev Ind Pharm. 2000;26(12):1279–84. doi:10.1081/DDC-100102309.

    Article  CAS  PubMed  Google Scholar 

  18. Weers JG, Tarara TE, Tzannis S. Lipid formulations for spontaneous drug encapsulation. US patent application 20050214224, 4 Nov 2004.

  19. Desai TR, Wong JP, Hancock REW, Finlay WH. A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling. J Pharm Sci. 2002;91:482–91. doi:10.1002/jps.10021.

    Article  CAS  PubMed  Google Scholar 

  20. Coderch L, Fonollosa J, Pera MD, Estelrich J, Maza ADL, Parra JL. Influence of cholesterol on liposome fluidity by EPR relationship with percutaneous absorption. J Control Release. 2000;68:85–95. doi:10.1016/S0168-3659(00)00240-6.

    Article  CAS  PubMed  Google Scholar 

  21. McMullen TPW, Lewis RNAH, McElhaney RN. Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines. Biochemistry. 1993;32:516–22. doi:10.1021/bi00053a016.

    Article  CAS  PubMed  Google Scholar 

  22. Ohtake S, Schebor C, Palecek SP, de Pablo JJ. Phase behavior of freeze-dried phospholipid–cholesterol mixtures stabilized with trehalose. Biochim Biophys Acta. 2005;1713:57–64. doi:10.1016/j.bbamem.2005.05.001.

    Article  CAS  PubMed  Google Scholar 

  23. Popova AV, Hincha DK. Effects of cholesterol on dry bilayers: interactions between phosphatidylcholine unsaturation and glycolipid or free sugar. Biophys J. 2007;93:1204–14. doi:10.1529/biophysj.107.108886.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberger F. Protein crystallization. J Cryst Growth. 1996;166:40–54. doi:10.1016/0022-0248(95)00921-3.

    Article  CAS  Google Scholar 

  25. Steckel H, Bolzen N. Alternative sugars as potential carriers for dry powder inhalations. Int J Pharm. 2004;270:297–306. doi:10.1016/j.ijpharm.2003.10.039.

    Article  CAS  PubMed  Google Scholar 

  26. New RRC. Liposomes a practical approach. New York: Oxford University Press; 1990.

    Google Scholar 

  27. Brandl M, Bachmann D, Drechsler M, Bauer KH. Liposome preparation by a new high pressure homogenizer gaulin micron Lab 40. Drug Dev Ind Pharm. 1990;16:2167–91. doi:10.3109/03639049009023648.

    Article  CAS  Google Scholar 

  28. Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959;234:466–8.

    CAS  PubMed  Google Scholar 

  29. Shugar D. Measurement of lysozyme activity and the ultra violet inactivation of lysozyme. Biochim Biophys Acta. 1952;8:302–9.

    Article  CAS  PubMed  Google Scholar 

  30. Weiner AL. Liposomes as carriers for polypeptides. Adv Drug Deliv Rev. 1989;3:307–41. doi:10.1016/0169-409X(89)90026-4.

    Article  CAS  Google Scholar 

  31. Goldbach P, Brochart H, Stamm A. Spray-drying of liposomes for a pulmonary administration. I. Chemical stability of phospholipids. Drug Dev Ind Pharm. 1993;19(19):2611–22. doi:10.3109/03639049309047204.

    Article  CAS  Google Scholar 

  32. Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ et al. Interactions of sugars with membranes. Biochim Biophys Acta. 1988;947:367–84. doi:10.1016/0304-4157(88)90015-9.

    CAS  PubMed  Google Scholar 

  33. Hoffmann H. Analytical methods and stability testing of biopharmaceuticals. In: McNally EJ, editor. Protein formulation and delivery. New York: Marcel Dekker; 2000. p. 71–110.

    Google Scholar 

  34. Elkordy AA, Forbes RT, Barry BW. Integrity of crystalline lysozyme exceeds that of a spray-dried form. Int J Pharm. 2002;247:79–90. doi:10.1016/S0378-5173(02)00379-4.

    Article  CAS  PubMed  Google Scholar 

  35. Chougule MB, Padhi BK, Misra A. Nano-liposomal dry powder inhaler of amiloride hydrochloride. J Nanosci Nanotech. 2006;6:3001–9. doi:10.1166/jnn.2006.405.

    Article  CAS  Google Scholar 

  36. Nirale NM, Vidhate RD, Nagarsenker MS. Fluticasone propionate liposomes for pulmonary delivery. Indian J Pharm Sci. 2009;71:709–11.

    Google Scholar 

  37. Giulieria F, Krafft MP. Tubular microstructures made from nonchiral single-chain fluorinated amphiphiles: Impact of the structure of the hydrophobic chain on the rolling-up of bilayer membrane. J Colloid Interf Sci. 2003;258(2):335–44. doi:10.1016/S0021-9797(03)00016-X.

    Article  Google Scholar 

  38. Lee S-C, Lee K-E, Kim J-J, Lim S-H. The effect of cholesterol in the liposome bilayer on the stabilization of incorporated retinol. J Liposome Res. 2005;15:157–66. doi:10.1080/08982100500364131.

    Article  CAS  PubMed  Google Scholar 

  39. Demel RA, Kruyff BD. The function of sterols in membranes. Biochim Biophys Acta. 1976;457:109–32. doi:10.1016/0304-4157(76)90008-3.

    CAS  PubMed  Google Scholar 

  40. van Winden ECA, Zhang W, Crommelin DJA. Effect of freezing rate on the stability of liposomes during freeze-drying and rehydration. Pharm Res. 1997;14(9):1151–60. doi:10.1023/A:1012142520912.

    Article  PubMed  Google Scholar 

  41. Lentz B, Carpenter T, Alford DR. Spontaneous fusion of phosphatidylcholine small unilamellar vesicles in the fluid phase. Biochemistry. 1985;26:5389–97. doi:10.1021/bi00391a026.

    Article  Google Scholar 

  42. Gorbenko GP, Ioffe VM, Kinnunen PKJ. Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association. Biophys J. 2007;93:140–53. doi:10.1529/biophysj.106.102749.

    Article  CAS  PubMed  Google Scholar 

  43. Laridi R, Kheadr EE, Benech R-O, Vuillemard JC, Lacroix C, Fliss I. Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. Int Dairy J. 2003;13:325–36. doi:10.1016/S0958-6946(02)00194-2.

    Article  CAS  Google Scholar 

  44. Rodriguez-Nogales JM, Lopez AD. A novel approach to develop β-galactosidase entrapped in liposomes in order to prevent an immediate hydrolysis of lactose in milk. Int Dairy J. 2006;16:354–60. doi:10.1016/j.idairyj.2005.05.007.

    Article  CAS  Google Scholar 

  45. Sebti T, Amighi K. Preparation and in vitro evaluation of lipidic carriers and fillers for inhalation. Eur J Pharm Biopharm. 2006;63:51–8. doi:10.1016/j.ejpb.2005.11.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to grants from the Graduate School of Chulalongkorn University, Faculty of Pharmaceutical Sciences and from the Commission on Higher Education of Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poj Kulvanich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charnvanich, D., Vardhanabhuti, N. & Kulvanich, P. Effect of Cholesterol on the Properties of Spray-Dried Lysozyme-Loaded Liposomal Powders. AAPS PharmSciTech 11, 832–842 (2010). https://doi.org/10.1208/s12249-010-9442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9442-8

Key words

Navigation