Skip to main content
Log in

Investigation of the Physicochemical and Physicomechanical Properties of a Novel Intravaginal Bioadhesive Polymeric Device in the Pig Model

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop and evaluate the bioadhesivity, in vitro drug release, and permeation of an intravaginal bioadhesive polymeric device (IBPD) loaded with 3′-azido-3′-deoxythymidine (AZT) and polystyrene sulfonate (PSS). Modified polyamide 6,10, poly(lactic-coglycolic acid), polyacrylic acid, polyvinyl alcohol, and ethylcellulose were blended with model drugs AZT and PSS as well as radio-opaque barium sulfate (BaSO4) and then compressed into caplet devices on a tableting press. One set of devices was coated with 2% w/v pentaerythritol polyacrylic acid (APE-PAA) while another remained uncoated. Thermal analysis was performed on the constituent polymers as well the IBPD. The changes in micro-environmental pH within the simulated human vaginal fluid due to the presence of the IBPD were assessed over a period of 30 days. Textural profile analysis indicated that the bioadhesivity of the APE-PAA-coated devices (3.699 ± 0.464 N; 0.0098 ± 0.0004 J) was higher than that of the uncoated devices (1.198 ± 0.150 N; 0.0019 ± 0.0001 J). In addition, BaSO4-facilitated X-ray imaging revealed that the IBPD adhered to pig vaginal tissue over the experimental period of 30 days. Controlled drug release kinetics was obtained over 72 days. During a 24-h permeation study, an increase in drug flux for both AZT (0.84 mg cm−2 h−1) and PSS (0.72 mg cm−2 h−1) was realized up to 12 h and thereafter a steady-state was achieved. The diffusion and dissolution dynamics were mechanistically deduced based on a chemometric and molecular structure modeling approach. Overall, results suggested that the IBPD may be sufficiently bioadhesive with desirable physicochemical and physicomechanical stability for use as a prolonged intravaginal drug delivery device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release. 2005;103(I2):301–13.

    Article  CAS  PubMed  Google Scholar 

  2. Benkop-Schnurch A, Hornof M. Intravaginal drug delivery systems: design, challenges and solutions. Am J Drug Deliv. 2003;1(4):241–54.

    Article  Google Scholar 

  3. Iyer V, Bendgude N, Poddar SS. Vaginal drug delivery. Express Pharma. 2008. http://www.expresspharmaonline.com/20080715/research02.shtml. Accessed 19 March 2009.

  4. Cohen MS, Black JR, Proctor RA, Sparling PF. Host defenses and the vaginal mucosa: a re-evaluation. Scand J Urol Nephrol. 1984;86:3–22.

    Google Scholar 

  5. Carrington GL, Rohrer T, Jones E, Moore P. Sulfanilamide absorption via the rectum and vagina. Surg Gynecol Obstet. 1944;78:333–4.

    Google Scholar 

  6. Goldberger MA, Walter RI, Lapid LS. Absorption of penicillin from the vagina. Am J Obstet Gynecol. 1947;53:529–31.

    CAS  PubMed  Google Scholar 

  7. Mishell DR, Lumkin M, Stone S. Inhibition of ovulation with cyclic use progesterone-impregnanted devices. Am J Obstet Gynecol. 1972;13:927–32.

    Google Scholar 

  8. Fried ND, Tredway DR, Mishell DR. Termination of early pregnancy with prostaglandin E2 vaginal suppositories. Contraception. 1973;8:255–63.

    Article  Google Scholar 

  9. Kirton KT, Roseman TJ, Forber AD. Evaluation of progesterone-containing silicone vaginal devices in rhesus monkeys. Contraception. 1973;8:561–8.

    Article  CAS  Google Scholar 

  10. Johansson EDB, Luukkainen T, Vartiainen E, Victor A. The effect of progestin R 2323 released from vaginal rings on ovarian function. Contraception. 1975;12:299–307.

    Article  CAS  PubMed  Google Scholar 

  11. Nuwayser ES, Williams DL. Development of delivery system for prostaglandins. Adv Exp Med Biol. 1974;47:45–164.

    Google Scholar 

  12. Verman K, Garg S. The scope and potential of vaginal drug delivery. Pharm Sci & Technol Today. 2000;3(10):359–64.

    Article  Google Scholar 

  13. Valenta C, Constantia E, Kast CE, Harich I, Bernkop-Schnürch A. Development and in vitro evaluation of a bioadhesive vaginal delivery system for progesterone. J Control Release. 2001;77(3):323–32.

    Article  CAS  PubMed  Google Scholar 

  14. Yoo W, Dharmala K, Lee C. The physicodynamic properties of bioadhesive polymeric films developed as female controlled drug delivery system. Int J Pharm. 2006;309(1–2):139–45.

    Article  CAS  PubMed  Google Scholar 

  15. Bonferoni MC, Sandri G, Rossi S, Ferrari F, Gibin S, Caramella C. Chitosan citrate as multifunctional polymer for vaginal delivery: evaluation of penetration enhancement and peptidase inhibition properties. Eur J Pharm Sci. 2007;33(2):166–76.

    Article  Google Scholar 

  16. Wang L, Tang X. A novel ketoconazole bioadhesive effervescent tablet for vaginal delivery: design, in vitro and ‘in vivo’ evaluation. Int J Pharm. 2008;350(1–2):181–7.

    Article  CAS  PubMed  Google Scholar 

  17. Valenta C. Bioadhesive polymers: strategies, achievements and future challenge. Adv Drug Deliv Rev. 2005;57(11):1692–712.

    Article  CAS  PubMed  Google Scholar 

  18. das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm. 2006;318(1–2):1–14.

    PubMed  Google Scholar 

  19. Ndesendo VMK, Pillay V, Choonara YE, Buchmann E, Bayever DN, Meyer LCR. Current intravaginal drug delivery approaches employed for the prophylaxis of HIV/AIDS and prevention of sexually transmitted infections. AAPS PharmSciTech. 2008;9(2):505–20.

    Article  PubMed  Google Scholar 

  20. Fauci AS. International Trial Of Two Microbicides Begins, Science Daily. 2005. http://www.sciencedaily.com/releases/2005/02/050213135251.htm. (accessed May 22, 2009).

  21. Parija S, Nayak SK, Verma SK, Tripathy SS. Studies on physico-mechanical properties and thermal characteristics of polypropylene/layered silicate nanocomposites. Polymer Compos. 2004;25(6):646–52.

    Article  CAS  Google Scholar 

  22. Liu TX, Liu ZH, Ma KX, Shen L, Zeng KY, He CB. Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Comp Sci Tech. 2003;63(3–4):331–7.

    Article  CAS  Google Scholar 

  23. Ribeiro M, Grolier JPE. Temperature modulated DSC for the investigation of polymer materials: a brief account of recent studies. J Therm Anal Calorim. 1999;57(1):253–63.

    Article  CAS  Google Scholar 

  24. Pijpers TFJ, Mathot VBF, Goderis B et al. High-speed calorimetry for the study of the kinetics of (De)vitrification, crystallization, and melting of macromolecules. Macromol. 2000;35(9):3601–13.

    Google Scholar 

  25. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114:15–40.

    Article  CAS  PubMed  Google Scholar 

  26. Avdeef A, Artursson Sibylle Neuhoff S et al. Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA pK a flux method. Eur J Pharm Sci. 2005;24(43):333–49.

    Article  CAS  PubMed  Google Scholar 

  27. Van Itallie CM, Anderson JM. The Molecular Physiology of Tight Junction Pores Physiology. 2004;19:331–8.

    Google Scholar 

  28. Garg S, Verman K, Anderson RA, Zaneveld LJ. Rapidly disintegrating novel bioadhesive vaginal tablets of polystyrene sulfonate (PSS), a potential microbicide formulation, International Conference of AIDS, July 11–16 2004; Abstract No.TuPeB4656.

  29. Chu H, Yeo Y, Chuang KS. Entry in emulsion polymerization using a mixture of sodium polystyrene sulfonate and sodium dodecyl sulfate as the surfactant. Polymer. 2007;48(8):2298–305.

    Article  CAS  Google Scholar 

  30. Anderson RA, Feathergill X, Diao M, Cooper R, Kirkipatrick P, Spear DP et al. Evaluation of poly (styrene-4-sulfonate) as a preventive agent for conception and sexually transmitted diseases. J Androl. 2000;121(6):862–75.

    Google Scholar 

  31. Simoes JA, Citron DM, Aroutcheva A, Anderson RA, Chany CJ, Waller DP et al. Two novel vaginal microbicides (polystyrene sulfonate and cellulose sulfate) inhibit Gardenerella vaginalis and anaerobes commonly associated with bacterial vaginosis. Antimicrob Agents Chemother. 2002;46(8):2692–5.

    Article  CAS  PubMed  Google Scholar 

  32. Bourne N, Zanevelde LJD, Ward JA, Ireland JP, Stanberry LR. Poly (sodium 4-sulfonate): evaluation of a topical microbicide gel against herpes simplex virus type 2 and Chlamydia trachomatis infection in mice. Clin Microbiol Infect. 2003;9:816–22.

    Article  CAS  PubMed  Google Scholar 

  33. D’Cruz OJ, UcKun FM. Clinical development of microbicides for the prevention of HIV infection. Curr Pharm Des. 2004;10(3):315–35.

    Article  PubMed  Google Scholar 

  34. Keller MJ, Tuyama A, Carlucci MJ, Herold BC. Topical microbicides for the prevention of genital herpes infection. J Antimicrob Chemother. 2005;55:420–3.

    Article  CAS  PubMed  Google Scholar 

  35. Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF. Rheological, adhesive and release characterisation of semisolid carbopol/tetraglycol systems. Int J Pharm. 2006;307(2):129–40.

    Article  CAS  PubMed  Google Scholar 

  36. Ndesendo VMK, Pillay V, Choonara YE, Khan RA, Meyer L, Buchmann E et al. In vitro and ex vivo bioadhesivity analysis of polymeric intravaginal caplets using physicomechanics and computational structural modeling. Int J Pharm. 2009;370(1–2):151–9.

    Article  CAS  PubMed  Google Scholar 

  37. Pond WG, Houpt KA. Reproductive physiology. The Biology of the Pig. New York: Cornell University Press; 1988. p. 129–80.

    Google Scholar 

  38. D’cruz OJ, Erbeck D, Uckun FM. A study of the potential of the pig as a model for the vaginal irritancy of benzalkonium chloride in comparison to the nonirritant microbicide PHI-443 and the spermicide vanadocene dithiocarbamate. Toxicol Pathol. 2005;33:465–76.

    Article  PubMed  Google Scholar 

  39. Wang Z, Li X, Su D, Li Y, Wu L, Wang Y et al. Residue depletion of Imidocarb in swine tissue. J Agric Food Chem. 2009;57:2324–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bailey ML, Swett JE. Radiopaque compositions, articles and methods of making and using same. USPTO Patent Application 20070270691. 2007. http://www.freshpatents.com/Radiopaque-compositions-articles-and-methods-of-making-and-using-same-dt20071122ptan20070270691.php. Accessed 05 April 2009.

  41. Park JH, Ye M, Park K. Biodegradable polymers for microencapsulation of drugs. Molecules. 2005;10(1):146–61.

    Article  CAS  PubMed  Google Scholar 

  42. Yasukawa T, Ogura Y, Kimura H et al. Drug delivery from ocular implants. Expert Opin Drug Deliv. 2006;3(1):261–73.

    Article  CAS  PubMed  Google Scholar 

  43. Kulkarni A, Reiche J, Lendlein A. Hydrolytic degradation of poly(rac-lactide) and poly[(rac-lactide)-co-glycolide] at the air–water interface. Surf Interface Anal. 2007;39(9):740–6.

    Article  CAS  Google Scholar 

  44. Kolawole OA, Pillay V, Choonara YE. Novel modified polyamide 6, 10 variants synthesized by modified interfacial polymerization for application as a rate-modulated monolithic drug delivery System. J Bioact Comp Polym. 2007;22:281–313.

    Article  CAS  Google Scholar 

  45. Iseki T, Takahashi M, Hattori H, Hatakeyama T, Hatakeyama H. Viscoelastic properties of xanthan gum hydrogels annealed in the sol state. Food Hydrocoll. 2001;15(4–6):326.

    Google Scholar 

  46. Gimeno E, Moraru CI, Kokini JL. Effects of xanthan gum and CMC on the structure and texture of corn flour pellets expanded by microwave heating. Cereal Chem. 2003;81(1):100–7.

    Article  Google Scholar 

  47. Verhoeven E, Vervaet C, Remon JP. Xanthan gum to tailor drug release of sustained-release ethylcellulose mini-matrices prepared via hot-melt extrusion: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2006;63(3):320–30.

    Article  CAS  PubMed  Google Scholar 

  48. Umamaheshwari RB, Ramteke S, Jain NK. Anti-Helicobacter pylori effect of bioadhesive nanoparticles bearing amoxicillin in experimental gerbils model. AAPS PharmSciTech. 2004;5:2.

    Article  Google Scholar 

  49. Charde S, Mudgal M, Kumar L, Saha R. Development and evaluation of buccoadhesive controlled release tablets of lercanidipine. AAPS PharmSciTech. 2008;9(1):182–90.

    Article  PubMed  Google Scholar 

  50. Owen DH, Katz DF. A vaginal fluid stimulant. Contraception. 1999;59(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  51. Giannola LI, De Caro V, Giandalia G, Siragusa MG, Tripodo, Florena AM et al. Release of naltrexone on bucal mucosa: permeation studies, histological aspects and matrix system design. Eur J Pharm Biopharm. 2007;67:425–33.

    Article  CAS  PubMed  Google Scholar 

  52. Owen DH, Katz DF. A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J Androl. 2005;26:459–69.

    Article  CAS  PubMed  Google Scholar 

  53. Notari S, Bocedi A, Ippolito G, Narciso P et al. Simultaneous determination of 16 anti-HIV drugs in human plasma by high-performance liquid chromatography. Journal Chromatogr B. 2005;831(1–2):258–66.

    Google Scholar 

  54. Sinha VR, Kumria R. polymers for colon specific drug delivery. A comparative in vitro evaluation. Acta Pharm. 2003;53:41–7.

    CAS  PubMed  Google Scholar 

  55. Singh MP, Lumpkin JA, Rosenblatt J. Effect of electrostatic interactions on polylysine release rates from collagen matrices and comparison with model predictions. J Control Release. 1995;35(2–3):165–79.

    Article  CAS  Google Scholar 

  56. Vishalakshi B. The effect of the charge density and structure of the polymer on the dye-binding characteristics of some cationic polyelectrolytes. J Polym Sci: Polym Chem. 1995;33:365–71.

    Article  CAS  Google Scholar 

  57. Jiang Y, Emau P, Cairns JS, Flanary L, Morton WR, McCarthy TD et al. SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV in macaques. AIDS Res Hum Retroviruses. 2005;21:207–13.

    Article  CAS  PubMed  Google Scholar 

  58. Bonifazi D, Enger O, Diederich F. Supramolecular [60]fullerene chemistry on surfaces. Chem Soc Rev. 2007;36:390–414.

    Article  CAS  PubMed  Google Scholar 

  59. Alvarez-Lorenzo C, Gomez-Amoza JL, Martinez-Pacheco R, Souto C. Microviscosity of hydroxypropylcellulose gel as a basis for prediction of drug diffusion rates. Int J Pharm. 1999;180:91–103.

    Article  CAS  PubMed  Google Scholar 

  60. Griffiths PC, Paul A, Khayat Z et al. Understanding the mechanism of action of poly(amidoamine)s as endosomolytic polymers: correlation of physicochemical and biological properties. Biomacromol. 2004;5(4):1422–7.

    Article  CAS  Google Scholar 

  61. Le Cer RD, Picton L, Argillier JF, Muller G. Entrapment and release of sodium polystyrene sulfonate (SPS) from calcium alginate gel beads. Eur Polym J. 2004;40(12):2709–15.

    Article  Google Scholar 

  62. Sen AK, Roy S, Juvekar VA. Effect of structure on solution and interfacial properties of sodium polystyrene sulfonate (NaPSS). (2007). Polym Int. 2007;56(2):167–74.

    Article  CAS  Google Scholar 

  63. Thapa P, Stevens HNE, Baillie AJ. In vitro drug release studies from a novel lyophilized nasal dosage form. Kathmandu University J Sci Tech. 2009;5(1):71–86.

    Google Scholar 

  64. Viridén A, Wittgren B, Larsson A. Investigation of critical polymer properties for polymer release and swelling of HPMC matrix tablets. Eur J Pharm Sci. 2009;36(2–3):297–309.

    Article  PubMed  Google Scholar 

  65. Knudsen KD, Lauten RA, Kjøniksen A, Nyström B. Rheological and structural properties of aqueous solutions of a hydrophobically modified polyelectrolyte and its unmodified analogue. Eur Polym J. 2004;40(4):721–33.

    Article  CAS  Google Scholar 

  66. Pu Q, Ng S, Mok V, Chen SB. Ion bridging effects on the electroviscosity of flexible polyelectrolytes. J Phys Chem B. 2004;108(37):14124–9.

    Article  CAS  Google Scholar 

  67. Chu H, Yeo Y, Chuang KS. Entry in emulsion polymerization using a mixture of sodium polystyrene sulfonate and sodium dodecyl sulfate as the surfactant. Polym. 2007;48(8):2298–305.

    Article  CAS  Google Scholar 

  68. Boskey, E. A., Jansen, M., Merski, I.K., Whaley, I.T., Moench, T. and Cone, R., BufferGel™ favors in vitro growth of lactobacilli while inhibiting BV-associated organisms Johns Hopkins University and ReProtect, Inc. Abstract A07. 2000. http://curezone.com/blogs/fm.asp?i=974816 [Accessed October 9, 2009].

  69. Smith KPB. Estrogens and the urogenital tract. Studies on steroid hormone receptors and a clinical study on a new estradiol releasing vaginal ring. Acta Obstet Gynecol Scand. 1993;72:S1–26.

    Google Scholar 

  70. Ferris DG, Francis SL, Diman ED et al. Variability of vaginal pH determination by patients and clinicians. J Am Board Fam Med. 2006;19:368–73.

    Article  PubMed  Google Scholar 

  71. WebMD. Vaginal Wet Mount. Women Health. 2008. http://women.webmd.com/vaginal-wet-mount [Accessed September 9, 2009].

  72. de Candia F, Maglio G, Palumbo R, Sirletti M. Synthesis and physical behavior of modified polyamide 6, 10-poly(butadiene-co-acrylonitrile) segmented block copolymers. Colloid Polym Sci. 1998;267(1):9–15.

    Article  Google Scholar 

  73. Murthy NS. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. J Polym Sci B Polym Phys. 2006;44(3):1763–82.

    Article  CAS  Google Scholar 

  74. Rouse JJ, Mohamed F, van der Walle CF. Physical ageing and thermal analysis of PLGA microspheres encapsulating protein or DNA. Int J Pharm. 2007;339(1–2):112–20.

    Article  CAS  PubMed  Google Scholar 

  75. Peppas NA, Hansen PJ. Crystallization kinetics of poly(vinyl alcohol). J Appl Polym Sci. 2003;27(12):4787–97.

    Article  Google Scholar 

  76. Sugama T, Kukacka LE, Carciello N. Nature of interfacial interaction mechanisms between polyacrylic acid macromolecules and oxide metal surfaces. J Mater Sci. 1984;19:4045–56.

    Article  CAS  Google Scholar 

  77. Frushour BG. A new thermal analytical technique for acrylic polymers. Polym Bulletin. 2004;4(5):305–14.

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Norwegian Agency for Development Co-operation (NORAD)-NORWAY, and by grants from the National Research Foundation (NRF) of South Africa and the Faculty Research Committee, University of Witwatersrand, Johannesburg, South Africa. St. John’s University of Tanzania is sincerely acknowledged.

Ethical Approval

Ethics clearance for this study was obtained from the Animal Ethics Committee of the University of the Witwatersrand (Ethics clearance no. 2007/25/05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ndesendo, V.M.K., Pillay, V., Choonara, Y.E. et al. Investigation of the Physicochemical and Physicomechanical Properties of a Novel Intravaginal Bioadhesive Polymeric Device in the Pig Model. AAPS PharmSciTech 11, 793–808 (2010). https://doi.org/10.1208/s12249-010-9439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9439-3

Key words

Navigation