Skip to main content
Log in

Formulation of Ketotifen Fumarate Fast-Melt Granulation Sublingual Tablet

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to prepare sublingual tablets, containing the antiasthmatic drug ketotifen fumarate which suffers an extensive first-pass effect, using the fast-melt granulation technique. The powder mixtures containing the drug were agglomerated using a blend of polyethylene glycol 400 and 6000 as meltable hydrophilic binders. Granular mannitol or granular mannitol/sucrose mixture were used as fillers. A mechanical mixer was used to prepare the granules at 40°C. The method involved no water or organic solvents, which are used in conventional granulation, and hence no drying step was included, which saved time. Twelve formulations were prepared and characterized using official and non official tests. Three formulations showed the best results and were subjected to an ex vivo permeation study using excised chicken cheek pouches. The formulation F4I possessed the highest permeation coefficient due to the presence of the permeation enhancer (polyethylene glycol) in an amount which allowed maximum drug permeation, and was subjected to a pharmacokinetic study using rabbits as an animal model. The bioavailability of F4I was significantly higher than that of a commercially available dosage form (Zaditen® solution-Novartis Pharma-Egypt) (p > 0.05). Thus, fast-melt granulation allowed for rapid tablet disintegration and an enhanced permeation of the drug through the sublingual mucosa, resulting in increased bioavailabililty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schaefer T, Holm P, Kristensen HG. Melt granulation in a laboratory scale high shear mixer. Drug Dev Ind Pharm. 1990;16(8):1249–77.

    Article  CAS  Google Scholar 

  2. Thies R, Kleinebudde P. Melt pelletization of a hygroscopic drug in a high shear mixer. Part I: Influence of process variables. Int J Pharm. 1999;188:131–43.

    Article  CAS  PubMed  Google Scholar 

  3. Voinovich D, Moneghini M, Perisutti B, Filipovic-Gricic J, Gabnar I. Preparation in a high shear mixer of sustained release pellets by melt pelletization. Int J Pharm. 2000;203:235–44.

    Article  CAS  PubMed  Google Scholar 

  4. Ochoa L, Igartua M, Hernandez RM, Gascon AR, Pedraz JL. Preparation of sustained release hydrophilic matrices by melt granulation in a high shear mixer. J Pharm Pharm Sci. 2005;8(2):132–40.

    CAS  PubMed  Google Scholar 

  5. Rodriguez L, Cavallari C, Passerini N, Albertini B, Gonzalez ML. Fini. Preparation and characterization by morphological analysis of diclofenac/PEG 4000 granules obtained using three different techniques. Int J Pharm. 2002;242(1–2):285–9.

    Article  CAS  PubMed  Google Scholar 

  6. Damian F, Balton N, Naisens L, Balzarini J, Kinget R, Augustijns P et al. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and gelucire 44/14. Eur J Pharm Sci. 2000;10:311–22.

    Article  CAS  PubMed  Google Scholar 

  7. Passerini N, Albertini B, Gonzalez-Rodriguez ML, Cavallarri C, Rodriguez L. Preparation and characterization of ibuprofen-poloxamer 199 granules obtained by melt granulation. Eur J Pharm Sci. 2002;15:71–8.

    Article  CAS  PubMed  Google Scholar 

  8. Abu Izza, Khawla A, Li Vincent H, Look LL, Parr GD, Schineller MK. Fast dissolving tablet. US patent 6733781; 2004.

  9. Perissutti B, Rubessa F, Moneghini M, Vocnviich D. Formulation design of carbamazepine fast release tablets prepared by melt granulation technique. Int J Pharm. 2003;329:72–80.

    Google Scholar 

  10. Yang D, Kulkami R, Behme RJ, Kotiyan PN. Effect of the melt granulation technique on the dissolution characteristics of griseofulvin. Int J Pharm. 2007;329:72–80.

    Article  CAS  PubMed  Google Scholar 

  11. Gelucires: Pharmaceutical Applications. http://www.Pharmainfo.net/reviews/gelucires-pharmaceutical-applications.

  12. Grant SM, Goa KL, Fitton A, Sorkin EM. Ketotifen, a review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in asthma and allergic disorders. Drugs. 1990;40:412–48.

    Article  CAS  PubMed  Google Scholar 

  13. Grahnen A, Lonnebo A, Beck O, Eckernas SA, Dahlstrom B, Lindstrom B. Pharmacokinetis of ketotifen after oral administration to healthy male subjects. Biopharm Drug Dispos. 1992;13(4):255–62.

    Article  CAS  PubMed  Google Scholar 

  14. Gosh TK, Pfister WR. Drug delivery to the oral cavity: molecules to market. Taylor & Francis Gp. (Pub.), USA; 2005.

  15. El Samaligy MS, Yehia SA, Basilios EB. Formulation and evaluation of diclofenac sodium buccoabhesive disc. Int J Pharm. 2004;286:27–39.

    Article  CAS  PubMed  Google Scholar 

  16. Dollery C. Therapeutic drugs. 2nd ed. U.K: Churchill Livingstone; 1999. p. K25–8.

    Google Scholar 

  17. Rowe RC, Sheskey PJ, Owe SC. Handbook of pharmaceutical excipients. 5th ed. Great Britain: Pharmaceutical; 2006. p. 459–263. 466-70.

    Google Scholar 

  18. The British Pharmacopoeia. The Stationary Office, UK; 2007, pp. A 207,304, 208, 397, 405.

  19. The USP NF. Asian Edn., US pharmacopoeial Convention, NC, Canada, Toronto; 2005, pp. 2677-2700.

  20. Lachman L, Leiberman HA, Kanig JK. The theory & practice of industrial pharmacy. Philadelphia, PA: Lee & Frebiger; 1986. p. 36–102. 184, 293, 297.

    Google Scholar 

  21. European Pharmacopoeia. 4th Edn, Council of Europe, Strasbourg, France. 2002, pp. 1433–5.

  22. Florey K. Analytical profiles of drug substances, vol. 13. USA: Academic; 1984. p. 239–63.

    Google Scholar 

  23. Sloan KB, Bcall HD, Weimar WR, Villanueva R. Effect of receptor phase composition on the permeability of hairless mouse skin in diffusion cell experiments. Int J Pharm. 1991;73:97–104.

    Article  CAS  Google Scholar 

  24. Bird AP, Faltinek JR, Shojaei AH. Transbuccal peptide delivery: stability and in vitro permeation studies on endomorphin-1. J Control Release. 2001;73:31–6.

    Article  CAS  PubMed  Google Scholar 

  25. Mannila J, Järvinen K, Tarvainen M, Jarho P. Effects of RM-β-CD on sublingual bioavailability of ∆9-tetrahydrocannabinol in rabbits. Eur J Pharm Sci. 2005;26:71–7.

    Article  CAS  PubMed  Google Scholar 

  26. Mannila J, Järvinen K, Tarvainen M, Jarho P. Sublingual administration of ∆9-tetrahydrocannabinol in rabbits. Life Sci. 2006;78:1911–4.

    Article  CAS  PubMed  Google Scholar 

  27. Chiang CH, Lui YL, Chen JR. Therapeutic effect and pharmacokinetics of ketotifen transdermal delivery systems. Drug Dev Ind Pharm. 1998;24(3):213–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ndindayino F, Vervaet C, Van Den Mooter G, Remon JP. Bioavailability of hydrochlorothiazide from isomat based moulded tablets. Int J Pharm. 2002;246:199–202.

    Article  CAS  PubMed  Google Scholar 

  29. Scwarbrick J., Boylan JC. Encyclopedia of Pharmaceutical Technology. 1991.

  30. Shojaei A. Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharmaceut Sci. 1998;1:15–30.

    CAS  Google Scholar 

  31. Gohel MC, Jogani PD. A review of coprocessed directly compressibile excipients. J Pharm Pharmaceut Sci. 2005;8(1):76–93.

    CAS  Google Scholar 

  32. Bolhius GR, Lerk CF. Comparative evaluation of excipients for direct compression. Part I. Pharm Wkly. 1973;108:469–81.

    Google Scholar 

  33. Buckton G, Yonemochi E, Yoon WL, Moffat AC. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation. Int J Pharm. 1999;181:41–7.

    Article  CAS  PubMed  Google Scholar 

  34. Gordon MS. Process considerations in reducing tablet friability and their effect on in-vitro dissolution. Drug Devel Ind Pharm. 1994;20(1):11–29.

    Article  CAS  Google Scholar 

  35. Mitrevej A, Sinchaipanid N, Faroongsarng D. Spray dried rice starch: comparative evaluation of direct compression of tablets. Drug Devel Ind Pharm. 1986;12:2091–111.

    Article  Google Scholar 

  36. Mesmukl A, Phaechamud T. Indomethacin-polyethylene glycoltablet fabricated with mold technique. J Metals, Materials and Minerals. 2008;18(2):157–67.

    Google Scholar 

  37. Leonardi D, Barrera MG, Lamac MC, Salomn CJ. Development of prednisolone PEG 6000 fast release tablets from solid dispersions: solid state characterization, dissolution behavior and formulation parameters. AAPS Pharm Sci Tech. 2007;8(4): Article 108.

    Google Scholar 

  38. Verhoeven E, De Beer TRM, Schacht E, Vanden Mooter G, Remon JP, Vervaet C. Influence of PEG/polyethylene oxide on the release characterisitics of sustained release ethylcellulose mini-matrices produced by hot melt extrusion: in vitro and in vivo evaluations. Eur J Pharm Biopharm. 2009;72:463–70.

    Article  CAS  PubMed  Google Scholar 

  39. Herkenne C, Naik A, Kalia YN, Hadgraft I, Guy RH. Effect of propylene glycol on ibuprofen absorption into human skin in vivo. J Pharm Sci. 2008;97(1):185–97.

    Article  CAS  PubMed  Google Scholar 

  40. Cho YA, Gwak HS. Transdermal delivery of ketorolac tomethamine: effects of vehicles and penetration enhancers. Drug Devel Ind Pharm. 2004;30(6):557–64.

    Article  CAS  Google Scholar 

  41. Gwak HS, Oh IS, Chum IK. transdermal delivery of ondansetrone hydrochloride: effects of vehicles and penetration enhancers. Drug Devel Ind Pharm. 2004;30(2):187–94.

    Article  CAS  Google Scholar 

  42. Veuillez FA, Deshusses J, Buri P. Synthesis and characterization of an accylated dipeptide (Myr-Try-Leu) with modified transbuccal properties. Eur J Pharm Biopharm. 1999;48(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  43. Rathbone MJ, Hadgraft J. Absorption of drugs from human oral cavity. Int J Pharm. 1991;74:9–24.

    Article  CAS  Google Scholar 

  44. Haegeli L, Brunner La Rocca HP, Wenk M, Pfisterer M, Drewe J, Kruhenbuhl S. Sublingual administration of furosemide: a new application of an old drug. Br J Clin Pharmacol. 2007;64(6):804–9.

    CAS  PubMed  Google Scholar 

  45. Altay B, Horasanli K, Sarica K, Tanrivereti O, Kendirci M, Miroglu C. Double blind placebo-controlled, randomizied clinical trial of sublingual or intramuscular piroxicam in the treatment of renal colic: a comparative study. Urol Int. 2007;79:73–5.

    Article  CAS  PubMed  Google Scholar 

  46. Feitosa FE, de Amorin MM, Alencar Jr CA, Coutinho IC, Sampaio ZS. New formulation of sublingual misoprostol (25 mcg) for induction of labor. Rev Assoc Med Bras. 2006;52:251–5.

    Article  PubMed  Google Scholar 

  47. Hoj L, Cardoso P, Nielsen BB, Hridman L, Nielsen J, Aaby P. The effect of sublingual misoprostol in a primary health centre in Guinia-Bissau: randomizied double blind clinical trial. BMJ. 2005;1(331):723.

    Article  Google Scholar 

  48. Molander L, Lunell E. Pharmacokinetic investigation of a nicotine sublingual tablet. Eur J Clin Pharmacol. 2001;56(11):813–49.

    Article  CAS  PubMed  Google Scholar 

  49. Adams D. Penetration of water through human and rabbit oral mucosa in vitro. Arch Oral Biol. 1974;19:865–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are so much obliged to the agents of Roquette, France and JRS, Germany for supplying us with the necessary chemicals as gifts to participate in the field of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Louis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tayel, S.A., Soliman, I.I. & Louis, D. Formulation of Ketotifen Fumarate Fast-Melt Granulation Sublingual Tablet. AAPS PharmSciTech 11, 679–685 (2010). https://doi.org/10.1208/s12249-010-9425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9425-9

Key words

Navigation