Skip to main content
Log in

Development and In Vitro Characterization of Galactosylated Low Molecular Weight Chitosan Nanoparticles Bearing Doxorubicin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the present research was to evaluate the potential of galactosylated low molecular weight chitosan (Gal-LMWC) nanoparticles bearing positively charged anticancer, doxorubicin (DOX) for hepatocyte targeting. The chitosan from crab shell was depolymerized, and the lactobionic acid was coupled with LMWC using carbodiimide chemistry. The depolymerized and galactosylated polymers were characterized. Two types of Gal-LMWC(s) with variable degree of substitution were employed to prepare the nanoparticles using ionotropic gelation with pentasodium tripolyphosphate anions. Factors affecting nanoparticles formation were discussed. The nanoparticles were characterized by transmission electron microscopy and photon correlation spectroscopy and found to be spherical in the size range 106–320 nm. Relatively higher percent DOX entrapment was obtained for Gal-LMWC(s) nanoparticles than for LMWC nanoparticles. A further increase in drug entrapment was found with nanoparticles prepared by Gal-LMWC with higher degree of substitution. A hypothesis which correlates the ionic concentration of DOX in nanoparticles preparation medium and percent DOX entrapment in cationic polymer has been proposed to explain the enhanced DOX entrapment. In-vitro drug release study demonstrated an initial burst release followed by a sustained release. The targeting potential of the prepared nanoparticles was assessed by in vitro cytotoxicity study using the human hepatocellular carcinoma cell line (HepG2) expressing the ASGP receptors on their surfaces. The enthusiastic results showed the feasibility of Gal-LMWC(s) to entrap the cationic DOX and targeting potential of developed Gal-LMWC(s) nanoparticles to HepG2 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ann P. Looking at liver cancer. Nursing. 2006;36:52–5.

    Google Scholar 

  2. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol. 2001;35:421–30.

    Article  CAS  PubMed  Google Scholar 

  3. Liu J, Williams RO. Long-term stability of heat-humidity cured cellulose acetate phthalate coated beads. Eur J Pharm Biopharm. 2002;53:167–73.

    Article  CAS  PubMed  Google Scholar 

  4. Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37:429–42.

    Article  CAS  PubMed  Google Scholar 

  5. Baird RD, Kaye SB. Drug resistance reversal—are we getting closer? Eur J Cancer. 2003;39:2450–61.

    Article  CAS  PubMed  Google Scholar 

  6. Molema G, Meijer DKF. Targeting of drugs to various blood cell types using (neo-) glycoproteins, antibodies and other protein carriers. Adv Drug Deliv Rev. 1994;14:25–50.

    Article  CAS  Google Scholar 

  7. Meijer DKF, Jansen RW, Molema G. Drug targeting systems for antiviral agents: options and limitations. Antivir Res. 1992;18:215–58.

    Article  CAS  PubMed  Google Scholar 

  8. Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S et al. Targeted nanoparticles for cancer therapy. Nanotoday. 2007;2:14–21.

    Google Scholar 

  9. Muggia FM, Hainsworth JD, Jeffers S. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol. 1997;15:987–93.

    CAS  PubMed  Google Scholar 

  10. Cuvier C, Roblot-Treupel L, Millot JM, Lizard G, Chevillard S, Manfait M et al. Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. Biochem Pharmacol. 1992;44:509–17.

    Article  CAS  PubMed  Google Scholar 

  11. De Colin VAC, Dubernet C, Nemati F, Soma E, Appel M, Ferte J et al. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer. 1997;76:198–205.

    Google Scholar 

  12. Bennis S, Chapey C, Robert J, Couvreur P. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer. 1994;30:89–93.

    Article  Google Scholar 

  13. Ashwell G, Morell AG. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974;41:99–128.

    CAS  PubMed  Google Scholar 

  14. Sarasam AR, Krishnaswamy RK, Madihally SV. Blending chitosan with polycaprolactone: effects on physicochemical and antibacterial properties. Biomacromolecules. 2006;7:1131–8.

    Article  CAS  PubMed  Google Scholar 

  15. Nicol S. Life after death for empty shells. New Sci. 1991;129:46–8.

    CAS  Google Scholar 

  16. Tharanathan RN, Prashanth KVS 2001. Indian patent, 433/DEL/01.

  17. Kubota N, Tatsumoto N, Sano T, Toya K. Simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr Res. 2000;324:268–74.

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, McCarthy SP, Fross RA, Kaplan DL. Chitosan film acylation and effects on biodegradability. Macromolecules. 1996;29:3436–40.

    Article  CAS  Google Scholar 

  19. Pantaleone D, Yalpani M, Scollar M. Preparation of methyl 2, 3-di-O-mesyl-4, 6-thioanhydro-alpha-D-galactopyranoside and methyl 2-O-mesyl-4, 6-thioanhydro-alpha-D-gulopyranoside. Carbohydr Res. 1992;237:325–32.

    Article  CAS  Google Scholar 

  20. Wang W, Bo S, Li S, Qin W. Determination of the Mark–Houwink equation for chitosans with different degrees of deacetylation. Int J Biol Macromol. 1991;13:281–5.

    Article  CAS  PubMed  Google Scholar 

  21. Gao S, Chen J, Xu X, Zhi D, Yang Y, Hua Z et al. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int J Pharm. 2003;255:57–68.

    Article  CAS  PubMed  Google Scholar 

  22. Vila A, Sanchez A, Janes K, Behrens I, Kissel T, Vila JL et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm. 2004;57:123–31.

    Article  CAS  PubMed  Google Scholar 

  23. Truter EJ, Santos AS, Els WJ. Assessment of the antitumour activity of targeted immunospecific albumin microspheres loaded with cisplatin and 5-fluorouracil: toxicity against a rodent ovarian carcinoma in vitro. Cell Biol Int. 2001;25:51–9.

    Article  CAS  PubMed  Google Scholar 

  24. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–67.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshida M, Yamamoto N, Uehara T, Terao R, Nitta T, Harada N et al. Kupffer cell targeting by intraportal injection of the HVJ cationic liposome. Eur Surg Res. 2002;34:251–9.

    Article  CAS  PubMed  Google Scholar 

  26. Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol. 2002;1:1–17.

    Article  PubMed  Google Scholar 

  27. Kim TH, Jiang HL, Nah JW, Cho MH, Akaike T, Cho CS. Receptor-mediated gene delivery using chemically modified chitosan. Biomed Mater. 2007;2:S95–100.

    Article  CAS  PubMed  Google Scholar 

  28. Kwoh DY, Coffin CC, Lollo CP, Jovenal J, Banaszczyk MG, Mullen P, et al. (1999) Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta: Gene Structure and Expression 1444:171–190.

    Google Scholar 

  29. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.

    Article  CAS  PubMed  Google Scholar 

  30. Hsu SC, Don TM, Chiua WY. Free radical degradation of chitosan with potassium persulfate. Polym Degrad Stab. 2002;75:73–83.

    Article  CAS  Google Scholar 

  31. Huang M, Khor E, Lim L. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 2004;21:344–53.

    Article  CAS  PubMed  Google Scholar 

  32. Mao S, Shuai X, Unger F. The depolymerization of chitosan: effects on physicochemical and biological properties. Int J Pharm. 2004;281:45–54.

    Article  CAS  PubMed  Google Scholar 

  33. Park IK, Kim TH, Park YH, Shin BA, Choi ES, Chowdhury EH et al. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J Control Release. 2001;76:349–62.

    Article  CAS  PubMed  Google Scholar 

  34. Ghosh SS, Kao PM, McCue AW, Chappelle HL. Use of maleimide-thiol coupling chemistry for efficient synthesis of digonucleotide-enzyme conjugate hybridisation probes. Bioconjug Chem. 1990;1:71–6.

    Article  CAS  PubMed  Google Scholar 

  35. Kumbar SG, Kulkarni AR, Aminabhavi TM. Crosslinked chitosan microspheres for encapsulation of diclofenac sodium: effect of crosslinking agent. J Microencapsulation. 2002;19:173–80.

    Article  CAS  PubMed  Google Scholar 

  36. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lim KY, Wang Y et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release. 2001;70:399–421.

    Article  CAS  PubMed  Google Scholar 

  37. He P, Davis SS, Illum L. Chitosan microspheres prepared by spray drying. Int J Pharm. 1999;187:53–65.

    Article  CAS  PubMed  Google Scholar 

  38. Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release. 2001;74:317–23.

    Article  CAS  PubMed  Google Scholar 

  39. Tokumitsu H, Ichikawa H, Fukumori Y. Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm Res. 1999;16:1830–5.

    Article  CAS  PubMed  Google Scholar 

  40. Shu XZ, Zhu KJ. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm. 2002;233:217–25.

    Article  CAS  PubMed  Google Scholar 

  41. Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250:215–26.

    Article  CAS  PubMed  Google Scholar 

  42. Berth G, Dautzenberg H, Peter MG. Physico-chemical characterization of chitosans varying in degree of acetylation. Carbohydr Polym. 1998;36:205–16.

    Article  CAS  Google Scholar 

  43. Aiba SI. Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. Int J Bio Macromol. 1991;13:40–4.

    Article  CAS  Google Scholar 

  44. Pedroni VI, Schulz PC, Gashaider ME, Andreucetti N. Chitosan structure in aqueous solution. Colloid Polym Sci. 2003;282:100–2.

    Article  CAS  Google Scholar 

  45. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005;44:65–73.

    Article  CAS  PubMed  Google Scholar 

  46. Qi LF, Xu ZR, Li Y, Jiang X, Han XY. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol. 2005;11:5136–41.

    CAS  PubMed  Google Scholar 

  47. Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999;16:1576–81.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou SB, Deng XM, Li XH. Investigation on a novel core-coated microspheres protein delivery system. J Control Release. 2001;75:27–36.

    Article  CAS  PubMed  Google Scholar 

  49. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors are thankful to Central Drug Research Institute, Lucknow, India and Jawaharlal Nehru Cancer Hospital, Bhopal, India for providing necessary facility to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, N.K., Jain, S.K. Development and In Vitro Characterization of Galactosylated Low Molecular Weight Chitosan Nanoparticles Bearing Doxorubicin. AAPS PharmSciTech 11, 686–697 (2010). https://doi.org/10.1208/s12249-010-9422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9422-z

Key words

Navigation