Skip to main content

Advertisement

Log in

Chitosan and Glyceryl Monooleate Nanostructures Containing Gemcitabine: Potential Delivery System for Pancreatic Cancer Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objectives of this study are to enhance cellular accumulation of gemcitabine with chitosan/glyceryl monooleate (GMO) nanostructures, and to provide significant increase in cell death of human pancreatic cancer cells in vitro. The delivery system was prepared by a multiple emulsion solvent evaporation method. The nanostructure topography, size, and surface charge were determined by atomic force microscopy (AFM), and a zetameter. The cellular accumulation, cellular internalization and cytotoxicity of the nanostructures were evaluated by HPLC, confocal microscopy, or MTT assay in Mia PaCa-2 and BxPC-3 cells. The average particle diameter for 2% and 4% (w/w) drug loaded delivery system were 382.3 ± 28.6 nm, and 385.2 ± 16.1 nm, respectively with a surface charge of +21.94 ± 4.37 and +21.23 ± 1.46 mV. The MTT cytotoxicity dose-response studies revealed the placebo at/or below 1 mg/ml has no effect on MIA PaCa-2 or BxPC-3 cells. The delivery system demonstrated a significant decrease in the IC50 (3 to 4 log unit shift) in cell survival for gemcitabine nanostructures at 72 and 96 h post-treatment when compared with a solution of gemcitabine alone. The nanostructure reported here can be resuspended in an aqueous medium that demonstrate increased effective treatment compared with gemcitabine treatment alone in an in vitro model of human pancreatic cancer. The drug delivery system demonstrates capability to entrap both hydrophilic and hydrophobic compounds to potentially provide an effective treatment option in human pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106–30.

    Article  PubMed  Google Scholar 

  2. Freelove R, Walling AD. Pancreatic cancer: diagnosis and management. Am Fam Physician. 2006;73(3):485–92.

    PubMed  Google Scholar 

  3. Hertel LW et al. Grindey Evaluation of the antitumor activity of gemcitabine (2′, 2′-difluoro-2′-deoxycytidine). Cancer Res. 1990;50(14):4417–22.

    CAS  PubMed  Google Scholar 

  4. Plunkett W et al. Preclinical characteristics of gemcitabine. Anticancer Drugs. 1995;6 Suppl 6:7–13.

    Article  CAS  PubMed  Google Scholar 

  5. Burris HA et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15(6):2403–13.

    CAS  PubMed  Google Scholar 

  6. Heinemann V et al. Comparison of the cellular pharmacokinetics and toxicity of 2′, 2′-difluorodeoxycytidine and 1-beta-d-arabinofuranosylcytosine. Cancer Res. 1988;48(14):4024–31.

    CAS  PubMed  Google Scholar 

  7. Abbruzzese JL et al. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol. 1991;9(3):491–8.

    CAS  PubMed  Google Scholar 

  8. Reid JM et al. Phase I trial and pharmacokinetics of gemcitabine in children with advanced solid tumors. J Clin Oncol. 2004;22(12):2445–51.

    Article  CAS  PubMed  Google Scholar 

  9. Moog R et al. Change in pharmacokinetic and pharmacodynamic behavior of gemcitabine in human tumor xenografts upon entrapment in vesicular phospholipid gels. Cancer Chemother Pharmacol. 2002;49(5):356–66.

    Article  CAS  PubMed  Google Scholar 

  10. Mackey JR et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res. 1998;58(19):4349–57.

    CAS  PubMed  Google Scholar 

  11. Pastor-Anglada M et al. Nucleoside transporters in chronic lymphocytic leukaemia. Leukemia. 2004;18(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  12. Gourdeau H et al. Mechanisms of uptake and resistance to troxacitabine, a novel deoxycytidine nucleoside analogue, in human leukemic and solid tumor cell lines. Cancer Res. 2001;61(19):7217–24.

    CAS  PubMed  Google Scholar 

  13. Yang J et al. Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J Microencapsul. 2006;23(2):203–12.

    Article  CAS  PubMed  Google Scholar 

  14. Yang J et al. Preparation of poly epsilon-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharm. 2006;324(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  15. Patra CR et al. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 2008;68(6):1970–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gang J et al. Magnetic poly epsilon-caprolactone nanostructure containing Fe3O4 and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J Drug Target. 2007;15(6):445–53.

    Article  CAS  PubMed  Google Scholar 

  17. Stella B et al. Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. Int J Pharm. 2007;344(1–2):71–7.

    Article  CAS  PubMed  Google Scholar 

  18. Reddy LH, Couvreur P. Novel approaches to deliver gemcitabine to cancers. Curr Pharm Des. 2008;14(11):1124–37.

    Article  CAS  PubMed  Google Scholar 

  19. Huang LS et al. Preparation of gemcitabine polybutylcyanoacrylate nanoparticles. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27(11):1653–6.

    CAS  PubMed  Google Scholar 

  20. Galmarini CM et al. Polymeric nanogels containing the triphosphate form of cytotoxic nucleoside analogues show antitumor activity against breast and colorectal cancer cell lines. Mol Cancer The. 2008;7(10):3373–80.

    Article  CAS  Google Scholar 

  21. Arias JL et al. Polymeric nanoparticulate system augmented the anticancer therapeutic efficacy of gemcitabine. J Drug Target. 2009;17(8):586–98.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.

    Article  CAS  PubMed  Google Scholar 

  23. Bernkop-Schnurch A et al. Thiomers: preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. Int J Pharm. 2006;317(1):76–81.

    Article  PubMed  Google Scholar 

  24. Zheng F et al. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study. Life Sci. 2007;80(4):388–96.

    Article  CAS  PubMed  Google Scholar 

  25. De Campos AM et al. Chitosan nanostructure: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224(1–2):159–68.

    Article  PubMed  Google Scholar 

  26. Sandri G et al. Nanostructure based on N-trimethylchitosan: evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models. Eur J Pharm Biopharm. 2007;65(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  27. Engstrom S. Drug delivery from cubic and other lipid-water phases. Lipid Technol. 1990;2:42–5.

    Google Scholar 

  28. Hyde ST et al. A cubic structure consisting of a lipid bilayer forming in infinite periodic minimum surface of the gyriod type in the glycerylmonooleate-water system. Z Krystallogar. 1984;168:213–9.

    CAS  Google Scholar 

  29. Trickler WJ et al. A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSciTech. 2008;9(2):486–93.

    Article  CAS  PubMed  Google Scholar 

  30. Ganguly S, Dash AK. A novel in situ gel for sustained drug delivery and targeting. Int J Pharm. 2004;276(1–2):83–92.

    Article  CAS  PubMed  Google Scholar 

  31. Trickler WJ. The in vitro sub-cellular localization and in vivo efficacy of novel Chitosan/GMO nanostructures containing paclitaxel. Pharm Res. 2009;26(8):1963–73.

    Article  CAS  PubMed  Google Scholar 

  32. Jauhari S, Dash AK. A mucoadhesive in situ gel delivery system for paclitaxel. AAPS PharmSciTech. 2006;7(2):E53.

    Article  PubMed  Google Scholar 

  33. Sipos B et al. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch. 2003;442(5):444–52.

    PubMed  Google Scholar 

  34. Yonezawa S et al. Differential mucin gene expression in human pancreatic and colon cancer cells. Biochem J. 1991;276(Pt 3):599–605.

    CAS  PubMed  Google Scholar 

  35. Takeuchi H et al. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev. 2005;57(11):1583–94.

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi H et al. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv Drug Deliv Rev. 2001;47(1):39–54.

    Article  CAS  PubMed  Google Scholar 

  37. Takeuchi H et al. Mucoadhesion of polymer-coated liposomes to rat intestine in vitro. Chem Pharm Bull (Tokyo). 1994;42(9):1954–6.

    CAS  Google Scholar 

  38. Takeuchi H et al. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res. 1996;13(6):896–901.

    Article  CAS  PubMed  Google Scholar 

  39. Howard KA et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 2006;14(4):476–84.

    Article  CAS  PubMed  Google Scholar 

  40. Shikata F et al. In vitro cellular accumulation of gadolinium incorporated into chitosan nanostructure designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm. 2002;53(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  41. Takeuchi H et al. Effectiveness of submicron-sized, chitosan-coated liposomes in oral administration of peptide drugs. Int J Pharm. 2005;303(1–2):160–70.

    Article  CAS  PubMed  Google Scholar 

  42. Achanta G et al. Interaction of p53 and DNA-PK in response to nucleoside analogues: potential role as a sensor complex for DNA damage. Cancer Res. 2001;61(24):8723–9.

    CAS  PubMed  Google Scholar 

  43. Gerweck LE. Tumor pH: implications for treatment and novel drug design. Semin Radiat Oncol. 1998;8(3):176–82.

    Article  CAS  PubMed  Google Scholar 

  44. Burke T et al. Interaction of 2′, 2′-difluorodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and -independent nucleoside transporters of Ehrlich ascites tumor cells. J Pharmacol Exp Ther. 1998;286(3):1333–40.

    CAS  PubMed  Google Scholar 

  45. Hammond JR et al. [3H]gemcitabine uptake by nucleoside transporters in a human head and neck squamous carcinoma cell line. J Pharmacol Exp Ther. 1999;288(3):1185–91.

    CAS  PubMed  Google Scholar 

  46. Bergman AM et al. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer. 2003;88(12):1963–70.

    Article  CAS  PubMed  Google Scholar 

  47. Yao J et al. The mechanism of resistance to 2′, 2′-difluorodeoxycytidine (gemcitabine) in a pancreatic cancer cell line. Zhonghua Zhong Liu Za Zhi. 2005;27(12):721–6.

    CAS  PubMed  Google Scholar 

  48. Rejman J et al. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(Pt 1):159–69.

    Article  CAS  PubMed  Google Scholar 

  49. Panyam J et al. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanostructure: implications for drug and gene delivery. Faseb J. 2002;16(10):1217–26.

    Article  CAS  PubMed  Google Scholar 

  50. Chavanpatil MD et al. Nanostructure for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol. 2006;6(9–10):2651–63.

    Article  CAS  PubMed  Google Scholar 

  51. Nafee N et al. Chitosan-coated PLGA nanostructure for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine. 2007;3(3):173–83.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported in part by a Department of Defense Concept Award BC045664 and Health Future Foundation Grant, Creighton University, Omaha, NE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alekha K. Dash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trickler, W.J., Khurana, J., Nagvekar, A.A. et al. Chitosan and Glyceryl Monooleate Nanostructures Containing Gemcitabine: Potential Delivery System for Pancreatic Cancer Treatment. AAPS PharmSciTech 11, 392–401 (2010). https://doi.org/10.1208/s12249-010-9393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9393-0

Key words

Navigation