Skip to main content
Log in

Effects of Thermal Curing Conditions on Drug Release from Polyvinyl Acetate–Polyvinyl Pyrrolidone Matrices

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of dry and humid heat curing on the physical and drug release properties of polyvinyl acetate–polyvinyl pyrrolidone matrices. Both conditions resulted in increased tablet hardness; tablets stored under humid conditions showed high plasticity and deformed during hardness testing. Release from the matrices was dependent on the filler's type and level. Release profiles showed significant changes, as a result of exposure to thermal stress, none of the fillers used stabilized matrices against these changes. Density of neat polymeric compacts increased upon exposure to heat; the effect of humid heat was more evident than dry heat. Thermograms of samples cured under dry heat did not show changes, while those of samples stored under high humidity showed significant enlargement of the dehydration endotherm masking the glass transition of polyvinyl acetate. The change of the physical and release properties of matrices could be explained by the hygroscopic nature of polyvinyl pyrrolidone causing water uptake; absorbed water then acts as a plasticizer of polyvinyl acetate promoting plastic flow, deformation, and coalescence of particles, and altering the matrices internal structure. Results suggest that humid heat is more effective as a curing environment than dry heat for polyvinyl acetate–polyvinyl pyrrolidone matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Colombo R, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optical performance. Pharm Sci Technol Today. 2000;3:198–204.

    Article  CAS  PubMed  Google Scholar 

  2. Kanjickal DG, Lopina ST. Modeling of drug release from polymeric delivery systems—a review. Crit Rev Therap Drug Carrier Syst. 2004;21:345–86.

    Article  CAS  Google Scholar 

  3. Reynolds TD, Gehrke SH, Hussain AS, Shenouda LS. Polymer erosion and drug release characterization of hydroxypropyl methylcellulose matrices. J Pharm Sci. 1998;87:1115–23.

    Article  CAS  PubMed  Google Scholar 

  4. Kavanagh N, Corrigan OI. Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices—influence of agitation rate and dissolution medium composition. Int J Pharm. 2004;279:141–52.

    Article  CAS  PubMed  Google Scholar 

  5. Farhad T, Abrahmsen-Alami S, Hansen M, Larsson A. The impact of dose and solubility of additives on the release from HPMC matrix tablets-identifying critical conditions. Pharm Res. 2009;26(6):1496–503.

    Article  Google Scholar 

  6. Li CL, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. J Pharmacy Pharmacol. 2005;57(5):533–46.

    Article  CAS  Google Scholar 

  7. Khan GM, Zhu J. Studies on drug release kinetics from ibuprofen-carbomer hydrophilic matrix tablets: influence of co-excipients on release rate of the drug. J Control Release. 1999;57(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  8. Khan GM, Meidan VM. Drug release kinetics from tablet matrices based upon ethylcellulose ether-derivatives: a comparison between different formulations. Drug Dev Ind Pharm. 2007;33(6):627–39.

    Article  CAS  PubMed  Google Scholar 

  9. Gallardo D, Skalsky B, Kleinebudde P. Controlled release solid dosage forms using combinations of (meth)acrylate copolymers. Pharm Dev Technol. 2008;13(5):413–23.

    Article  CAS  PubMed  Google Scholar 

  10. Tapia C, Escobar Z, Costa E, Sapag-Hagar J, Valenzuela F, Basualto C, et al. Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazem clorhydrate release systems. Eur J Pharm Biopharm. 2004;57(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  11. Bühler V, Kollidon SR. In Kollidon®—polyvinylpyrrolidone in pharmaceutical industry. 9th Ed. Ludwigshafen: BASF SE; 2008. p. 255–70.

    Google Scholar 

  12. Draganoiu E, Andheria M, Sakr A. Evaluation of the new polyvinyl acetate/povidone excipient for matrix sustained release dosage forms. Pharm Ind. 2001;63(6):624–9.

    CAS  Google Scholar 

  13. Shao ZJ, Farooqi MI, Diaz S, Krishna AK, Muhammad NA. Effects of formulation variables and post-compression curing on drug release from a new sustained-release matrix material: poly(vinyl acetate)–povidone. Pharm Dev Technol. 2001;6(2):247–54.

    Article  CAS  PubMed  Google Scholar 

  14. Kranz H, Wagner T. Effects of formulation and process variables on the release of a weakly basic drug from single unit extended release formulations. Eur J Pharm Biopharm. 2006;62(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  15. Kranz H, Guthmann C, Wagner T, Lipp R, Reinhard J. Development of a single unit extended release formulation for ZK 811 752, a weakly basic drug. Eur J Pharm Sci. 2005;26(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  16. Omelczuk MO, McGinity JW. The influence of thermal treatment on the physical–mechanical and dissolution properties of tablets containing poly (DL lactic acid). Pharm Res. 1993;10(4):542–8.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW. Influence of thermal processing on the properties of chlorpheniramine maleate tablets containing an acrylic polymer. Pharm Dev Technol. 2002;7(4):481–9.

    Article  CAS  PubMed  Google Scholar 

  18. AlKhatib HS, Sakr A. Modeling of the effect of triethyl citrate and curing on drug release from film coated tablets. Pharm Ind. 2005;67(2):237–42.

    CAS  Google Scholar 

  19. Engineer S, Shao ZJ, Khagani NA. Temperature/humidity sensitivity of sustained-release formulations containing Kollidon SR. Drug Dev Ind Pharm. 2004;30(10):1089–94.

    Article  CAS  PubMed  Google Scholar 

  20. Higuchi T. Mechanism of sustained-action medication: theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  PubMed  Google Scholar 

  21. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliver Rev. 2001;48(2–3):139–57.

    Article  CAS  Google Scholar 

  22. Körber M, Hoffart V, Walther M, Macrae RJ, Bodmeier R. Effect of unconventional curing conditions and storage on pellets coated with Aquacoat ECD. Drug Dev Ind Pharm. 2010;36(2):190-199.

    Google Scholar 

  23. Sadek HM, Olsen JL. Determination of water-adsorption isotherms of hydrophilic polymers. Pharm Technol. 1981;5(2):42–8. 40.

    Google Scholar 

  24. Callahan JC, Cleary GW, Elefant M, Kaplan G, Kensler T, Nash RA. Equilibrium moisture content of pharmaceutical excipients. Drug Dev Ind Pharm. 1982;8(3):355–69.

    Article  CAS  Google Scholar 

  25. Zhang F, McGinity JW. Properties of hot-melt extruded theophylline tablets containing poly (vinyl acetate). Drug Dev Ind Pharm. 2000;26(9):931–42.

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez Novoa GA, Heinämäki J, Mirza S, Antikainen O, Colarte AI, Paz AS, et al. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate. Eur J Pharm Biopharm. 2005;59(2):343–50.

    Article  PubMed  Google Scholar 

  27. Camino G, Polishchuk AY, Luda MP, Revellino M. Comparison of the roles of two shrinkage-controlled low-profile additives in water aging of polyster resin-glass fiber composites. Polym Composites. 2000;21(5):821–31.

    Article  CAS  Google Scholar 

  28. Aulton ME, Travers DN, White PJ. Strain recovery of compacts on extended storage. J Pharmacy Pharmacol. 1973;25(Suppl):79P–86.

    CAS  Google Scholar 

  29. Picker KM. Time dependence of elastic recovery for characterization of tableting materials. Pharm Dev Technol. 2001;6(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  30. Rekhi GS, Nellore RV, Hussain AS, Tillman LG, Malinowski HJ, Augsburger LL. Identification of critical formulation and processing variables for metoprolol tartrate extended-release (ER) matrix tablets. J Control Release. 1999;59(3):327–42.

    Article  CAS  PubMed  Google Scholar 

  31. Alderman DA. A review of cellulose ethers in hydrophilic matrices for oral controlled release dosage forms. Int J Pharm Technol Prod Manuf. 1984;5:1–9.

    CAS  Google Scholar 

  32. Vueba ML, de Carvalho LA Batista, Veiga F, Sousa JJ, Pina ME. Role of cellulose ether polymers on ibuprofen release from matrix tablets. Drug Dev Ind Pharm. 2005;31(7):653–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support received from the Deanship of Scientific Research at the University of Jordan and the technical help in preparation and testing of matrices in the facilities of Triumpharma Inc., Amman, Jordan, and Specialized Pharma Inc., Amman, Jordan.

The authors also wish to acknowledge the technical help of Ms. Shorouq AlSotari, Ms. Amani Nimer, and Mr. Tareq Najjar. The authors also wish to thank Ms. Suha Muhaissen for help in taking photographs of tested tablets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatim S. AlKhatib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AlKhatib, H.S., Hamed, S., Mohammad, M.K. et al. Effects of Thermal Curing Conditions on Drug Release from Polyvinyl Acetate–Polyvinyl Pyrrolidone Matrices. AAPS PharmSciTech 11, 253–266 (2010). https://doi.org/10.1208/s12249-010-9378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9378-z

Key words

Navigation