Skip to main content

Advertisement

Log in

Stability Studies of Microparticulate System with Piroxicam as Model Drug

  • Brief/Technical Note
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Brogden RN, Heel RC, Speight TM, Avery GS. Piroxicam: a reappraisal of its pharmacology and therapeutic efficacy. Drugs. 1984;28:292–323.

    Article  PubMed  CAS  Google Scholar 

  2. O'Hanlon JJ, Muldoon T, Lowry D, McCleane G. Improved postoperative analgesia with preoperative piroxicam. Can J Anaesth. 1996;43:102–5.

    Article  PubMed  Google Scholar 

  3. Lindhart RJ. Biodegradable polymers for controlled release of drugs. In: Rosoff M, editor. Controlled release of drugs: polymers and aggregate systems. New York: VCH; 1989. p. 53–95.

    Google Scholar 

  4. Burgess DJ, Hickey AJ. Microsphere technology and applications. In: Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker; 1994. p. 1–29.

    Google Scholar 

  5. Lemaire V, Belair J, Hildgen P. Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process. Int J Pharm. 2003;258:95–107.

    Article  PubMed  CAS  Google Scholar 

  6. Park TG. Degradation of poly(D, L-lactic acid) microspheres: effect of molecular weight. J Control Release. 1994;30:161–73.

    Article  CAS  Google Scholar 

  7. Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials. 1995;16:1123–30.

    Article  PubMed  CAS  Google Scholar 

  8. Ramirez L, Pastoriza P, Herrero-Vanrell R. Biodegradable poly(DL lactic-co-glycolic acid) microspheres containing tetracaine hydrochloride: in-vitro release profile. J Microencapsul. 1999;16:105–15.

    Article  PubMed  CAS  Google Scholar 

  9. Miyajima M, Koshika A, Okada J, Ikeda M. Mechanism of drug release from poly(L-lactic acid) matrix containing acidic or neutral drugs. J Control Release. 1999;60:199–209.

    Article  PubMed  CAS  Google Scholar 

  10. Miyajima M, Koshika A, Okada J, Ikeda M. Effect of polymer/basic drug interactions on the two-stage diffusion-controlled release from a poly(-lactic acid) matrix. J Control Release. 1999;61:295–304.

    Article  PubMed  CAS  Google Scholar 

  11. Sandor M, Enscore D, Weston P, Mathiowitz E. Effect of protein molecular weight on release from micron-sized PLGA microspheres. J Control Release. 2001;76:297–311.

    Article  PubMed  CAS  Google Scholar 

  12. Dunne M, Corrigan OI, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-coglycolide particles. Biomaterials. 2000;21:1659–68.

    Article  PubMed  CAS  Google Scholar 

  13. Bittner B, Witt C, Mader K, Kissel T. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-coglycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release. J Control Release. 1999;60:297–309.

    Article  PubMed  CAS  Google Scholar 

  14. Siepmann J, Faisant N, Akiki J, Richard J, Benoit JP. Effect of the size of biodegradable microparticles on drug release: experiment and theory. J Control Release. 2004;96:123–34.

    Article  PubMed  CAS  Google Scholar 

  15. Liggins RT, Burt HM. Paclitaxel loaded poly(-lactic acid) (PLLA) microspheres: II. The effect of processing parameters on microsphere morphology and drug release kinetics. Int J Pharm. 2004;281:103–6.

    Article  PubMed  CAS  Google Scholar 

  16. Gumusderelioglu M, Deniz G. Sustained release of mitomycin-C from poly(DL-lactide) poly(DL-lactide-co-glycolide) films. J Biomater Sci. 2000;11:1039–50.

    Article  CAS  Google Scholar 

  17. Ehtezazi T, Washington C. Controlled release of macromolecules from PLA microspheres: using porous structure topology. J Control Release. 2000;68:361–72.

    Article  PubMed  CAS  Google Scholar 

  18. Cui F, Cun D, Tao A, Yang M, Shi K, Zhao M, et al. Preparation and characterization of melittin-loaded poly(DL-lactic acid) or poly(DL-lactic-co-glycolic acid) microspheres made by the double emulsion method. J Control Release. 2005;107:310–9.

    Article  PubMed  CAS  Google Scholar 

  19. Alexis F. Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly(lactic acid)-co-(glycolic acid). Polym Int. 2005;54:36–46.

    Article  CAS  Google Scholar 

  20. Makino K, Ohshima H, Kondo T. Mechanism of hydrolytic degradation of poly(lactide) microcapsules: effects of pH, ionic strength and buffer concentration. J Microencapsul. 1986;3:203–12.

    Article  PubMed  CAS  Google Scholar 

  21. Aso Y, Yoshioka S, Li Wan Po A, Terao T. Effect of temperature on mechanisms of drug release and matrix degradation of poly(-lactide) microspheres. J Control Release. 1994;31:33–9.

    Article  CAS  Google Scholar 

  22. Agrawal CM, Huang D, Schmitz JP, Athanasiou KA. Elevated temperature degradation of a 50:50 copolymer of PLA–PGA. Tissue Eng. 1997;3:345–52.

    Article  CAS  Google Scholar 

  23. Loo SCJ, Ooi CP, Boey YCF. Radiation effects on poly(lactide-coglycolide) (PLGA) and poly(lactide) (PLLA). Polym Degrad Stab. 2004;83:259–65.

    Article  CAS  Google Scholar 

  24. Burgess DJ, Hickey AJ. Microspheres: design and manufacturing. In: Burgess D, editor. Injectable dispersed systems: formulation, processing and performance. Boca Raton: Taylor and Francis; 2005. p. 305–53.

    Google Scholar 

  25. Hakkarainen M, Albertsson AC, Karlsson S. Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in-vivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stab. 1996;52:283–91.

    Article  CAS  Google Scholar 

  26. Vavia PR, Puthli SP. Poly(lactide-co-glycolide) microspheres of levonorgestrel for parenteral contraception. J Pharm Pharmacol. 1998;50:144.

    CAS  Google Scholar 

  27. International Conference on Harmonization (ICH) Q1A(R2) Stability of new drug substances and products, 2003, CPMP/ICH/2736/99.

  28. De A, Robinson D. Particle size and temperature effect on the physical stability of PLGA nanospheres and microspheres containing bodipy. AAPS PharmSciTech. 2004;5(4):53.

    Article  Google Scholar 

  29. Puthli SP, Vavia PR. Stability indicating HPTLC determination of piroxicam. J Pharm Biomed Anal. 2000;22:73–677.

    Article  Google Scholar 

  30. Burgess DJ, Crommelin DJA, Hussain AJ, Chen ML. Assuring quality and performance of sustained and controlled release parenterals. Eur J Pharm Sci. 2004;21:679–90.

    Article  PubMed  CAS  Google Scholar 

  31. Zolnik BS, Leary PE, Burgess DJ. Elevated temperature accelerated release testing of PLGA microspheres. J Control Release. 2006;112:293–300.

    Article  PubMed  CAS  Google Scholar 

  32. Higuchi T. Mechanism of sustained action medication: theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  PubMed  CAS  Google Scholar 

  33. Shah MV, De Gennaro MD, Suryakasuma H. An evaluation of albumin microcapsules prepared using a multiple emulsion technique. J Microencapsul. 1987;4:223–38.

    Article  PubMed  CAS  Google Scholar 

  34. Doshi CC, Bhalla HL. In vitro release studies of levonorgestrel loaded biodegradable microspheres. Ind J Pharm Sci. 1999;61:39–43.

    CAS  Google Scholar 

  35. Ranga Rao KV, Padmalatha DK, Buri PK. Cellulose matrices for zero-order release of soluble drugs. Drug Dev Ind Pharm. 1988;14:2299–320.

    Article  Google Scholar 

  36. Guidance for Industry, Dissolution Testing of Immediate Release Solid Oral Dosage Forms, U.S. Department of Health and Human Services, Food and Drug Administration Center for Drug Evaluation and Research (CDER). 1997. http://www.fda.gov/cder/Guidance/1713bp1.pdf

  37. Ambrogi V, Perioli L, Marmottini F, Giovagnoli S, Esposito M, Rossi C. Improvement of dissolution rate of piroxicam by inclusion into MCM-41 mesoporous silicate. Eur J Pharm Sci. 2007;32:216–22.

    Article  PubMed  CAS  Google Scholar 

  38. Akers MJ, Fites AL, Robinson RL. Formulation, design and development of parenteral suspensions. J Parenter Sci Technol. 1987;41:88–96.

    PubMed  CAS  Google Scholar 

  39. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.

    Article  PubMed  CAS  Google Scholar 

  40. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90:261–80.

    Article  PubMed  CAS  Google Scholar 

  41. Zhu G, Mallery SR, Schwendeman SP. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nature Biotech. 2000;18:52–7.

    Article  CAS  Google Scholar 

  42. Johansen P, Men Y, Audran R, Corradin G, Merkle HP, Gander B. Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives. Pharm Res. 1998;15:1103–10.

    Article  PubMed  CAS  Google Scholar 

  43. Csaba N, González L, Sánchez A, Alonso MJ. Design and characterization of new nanoparticulate polymer blends for drug delivery. J Biomater Sci Polym. 2004;15:1137–51.

    Article  CAS  Google Scholar 

  44. Tobio M, Schwendeman SP, Guo Y, McIver J, Langer R, Alonso MJ. Improved immunogenicity of a core-coated tetanus toxoid delivery system. Vaccine. 2000;18:618–22.

    Article  Google Scholar 

  45. Nakayama A, Kawasaki N, Yamamoto N, Maeda Y, Aiba S. Synthesis of biodegradable polyesters and effect of chemical structure on biodegradation. J Chem Soc Japan. 2001;1:1–9.

    Google Scholar 

  46. Saha SK, Tsuji H. Hydrolytic degradation of amorphous films of L-lactide copolymers with glycolide and D-lactide. Macromol Mater Eng. 2006;291:357–68.

    Article  CAS  Google Scholar 

  47. Tsuji H, Tezuka Y, Yamada K. Alkaline and enzymatic degradation of L-lactidecopolymers. II. Crystallized films of poly(L-lactide-co-D-lactide) and poly(Llactide) with similar crystallinities. J Polym Sci Part B Polym Phys. 2005;43:1064–75.

    Article  CAS  Google Scholar 

  48. Tsuji H, Ikeda Y. Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution. J Polym Sci Part A Polym Chem. 1998;36:59–66.

    Article  CAS  Google Scholar 

  49. Lam KH, Nieuwenhuis P, Molenaar I. Biodegradation of porous versus nonporous poly(L-lactic acid) films. J Mater Sci Mater Med. 1994;5:181–91.

    Article  CAS  Google Scholar 

  50. Loo SCJ, Ooi CP, Wee SHE, Boey YCF. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials. 2005;26:2827–33.

    Article  PubMed  CAS  Google Scholar 

  51. Frank A, Rath SK, Venkatraman SS. Controlled release from bioerodible polymers: effect of drug type and polymer composition. J Control Release. 2005;102:333–44.

    Article  PubMed  CAS  Google Scholar 

  52. Li S, Girod-Holland S, Vert M. Hydrolytic degradation of poly(dl lactic acid) in the presence of caffeine base. J Control Release. 1996;40:41–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Purac Biochem for gifting poly(lactide-co-glycolide) and IPCA laboratories for piroxicam. The authors acknowledge the valuable help of Dr. Dixit in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep R. Vavia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puthli, S., Vavia, P.R. Stability Studies of Microparticulate System with Piroxicam as Model Drug. AAPS PharmSciTech 10, 872–880 (2009). https://doi.org/10.1208/s12249-009-9280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9280-8

Key words

Navigation