Skip to main content
Log in

Irreversible Electroporation for Microbial Control of Drugs in Solution

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the feasibility of using irreversible electroporation (IRE) as a non-chemical method for eliminating microorganisms of liquid drugs. The studied drug was a topical ophthalmic medication, a pharmaceutical field in which the problem of microbial contamination has not yet been adequately solved, especially in the case of eye drops prescribed for chronic use. Commercially available Hylo-Comod® preservative-free eye drop solution was subjected to contamination with Escherichia coli bacteria (106 colony forming units/mL). Electroporation parameters for bacterial control were investigated by comparing the effects of electrical fields of 5.4, 7.2, and 10 kV/cm, delivered as 100-µs square pulses at 1 Hz in sequences of 10 pulses, 20 pulses, or 20 pulses delivered as four sets of five pulses with 1-min intervals between each set. Microorganism survival after treatment was determined by pour plate counting. Effects of the treatment parameters on temperature and pH were recorded. Bacterial survival was lowest (0.14% ± 0.03%) after application of 20 pulses delivered as four separate sets. With that application mode, the solution remained at pH 7.5 and the temperature rose to 35.6° ± 0.2°C. Because IRE can be efficiently delivered under conditions that avoid the potentially deleterious effects of electrical pulses on temperature and pH, it appears to be a feasible method for bacterial control of drugs in solution. The principles established in this study can be applied to any drug in solution and optimized individually according to the solution's composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jimenez L. Microbial diversity in pharmaceutical product recalls and environments. PDA J Pharm Sci Technol. 2007;61(5):383–99.

    PubMed  CAS  Google Scholar 

  2. Nichols RL, Smith JW. Editorial. Bacterial contamination of an anesthetic agent. N Engl J Med. 1995;333:184–5.

    Article  PubMed  CAS  Google Scholar 

  3. Young HA, Geier DA, Geier MR. Thimerosal exposure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the Vaccine Safety Datalink. J Neurol Sci. 2008;271:110–8. doi:10.1016/j.jns.2008.04.002.

    Article  PubMed  CAS  Google Scholar 

  4. Geier DA, Sykes LK, Geier MR. A review of thimerosal (merthiolate) and its ethylmercury breakdown product: specific historical considerations regarding safety and effectiveness. J Toxicol Environ Health, Part B. 2007;10:575–96.

    Article  CAS  Google Scholar 

  5. Geyer O, Bottone EJ, Podos SM, Schumer RA, Asbell PA. Microbial contamination of medications used to treat glaucoma. Br J Ophthalmol. 1995;79(4):376–9.

    Article  PubMed  CAS  Google Scholar 

  6. Schein OD, Hibberd PL, Starck T, Baker AS, Kenyon KR. Microbial contamination of in-use ocular medications. Arch Ophthalmol. 1992;110(1):82–5.

    PubMed  CAS  Google Scholar 

  7. Porges Y, Rothkoff L, Glick J, Cohen S. Sterility of glaucoma medications among chronic users in the community. J Ocul Pharmacol Ther. 2004;20(2):123–8.

    Article  PubMed  CAS  Google Scholar 

  8. Hovding G, Sjursen H. Bacterial contamination of drops and dropper tips of in -use multidose eye-drop bottles. Acta Ophthalmol. 1982;60(2):213–22.

    Article  CAS  Google Scholar 

  9. Dietlein TS, Jordan JF, Lüke C, Schild A, Dinslage S, Krieglstein GK. Self-application of single-use eyedrop containers in an elderly population: comparisons with standard eyedrop bottle and with younger patients. Acta Ophthalmol. 2008;86:856–9.

    Article  PubMed  Google Scholar 

  10. Stevens JD, Matheson MM. Survey of the contamination of eye drops of hospital inpatients and recommendations for the changing of current practice in eye drop dispensing. Br J Ophthalmol. 1992;76(1):36–8.

    Article  PubMed  CAS  Google Scholar 

  11. Leung EW, Medeiros FA, Weinreb RN. Prevalence of ocular surface disease in glaucoma patients. J Glaucoma. 2008;17(5):350–5.

    Article  PubMed  Google Scholar 

  12. Xiong C, et al. A rabbit dry eye model induced by topical medication of a preservative benzalkonium chloride. Invest Ophthalmol Vis Sci. 2008;49(5):1850–6.

    Article  PubMed  Google Scholar 

  13. Baudouin C, et al. Ocular surface inflammatory changes induced by topical antiglaucoma drugs: human and animal studies. Ophthalmology. 1999;106(3):556–63.

    Article  PubMed  CAS  Google Scholar 

  14. Labbé A, et al. Comparison of toxicological profiles of benzalkonium chloride and polyquaternium-1: an experimental study. J Ocul Pharmacol Ther. 2006;22(4):267–78.

    Article  PubMed  Google Scholar 

  15. Liang H, et al. Conjunctival and corneal reactions in rabbits following short-and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride. Br J Ophthalmol. 2008;92(9):1275–82.

    Article  PubMed  CAS  Google Scholar 

  16. Weather JC, Chimadzev YA. Theory of electroporation: a review. Biolectrochem Bioenerg. 1996;41(2):135–60.

    Article  Google Scholar 

  17. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electrical fields. EMBO J. 1980;1(7):841–5.

    Google Scholar 

  18. Fuller GW. Report on the investigations into the purification of the Ohio River water at Louisville Kentucky. New York: D. Van Nostrand; 1898.

    Google Scholar 

  19. Beattie JM, Lewis FC. The electric current (apart from the heat generated), a bacteriological agent in the sterilisation of milk and other fluids. J Hyg. 1925;24(2):123–37.

    Article  CAS  Google Scholar 

  20. Moses BD. Electrical pasteurization of milk. Agric Eng. 1938;19(12):525–6.

    Google Scholar 

  21. Sale AJ, Hammilton WA. Effect of high electric field on micro-organisms. 1. Killing of bacteria and yeast. 2 Mechanism of action of lethal effect. Biochim Biophys Acta. 1967;148(3):781–800.

    Google Scholar 

  22. Sale AJ, Hammilton WA. Effects of high electric fields on microorganisms. 3 Lysis of erythrocytes and protoplasts. Biochim Biophys Acta. 1968;163(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  23. Doevenspeck H. Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft. 1961;13(12):968–87.

    Google Scholar 

  24. Rubinsky B. Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007;6(4):255–60.

    PubMed  Google Scholar 

  25. FDA. Kinetics of microbial inactivation for alternative food processing technologies. US Food and Drug Administration Center for Food Safety and Applied Nutrition; 2000.

  26. Lelieved HLM, Notermans S, de Haan SWH. Food Preservation by pulsed electric fields. From research to application. Cambridge, England: World Publishing; 2007.

    Google Scholar 

  27. Miller L, Leor J, Rubinsky B. Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat. 2005 Dec;4:699–705

    Google Scholar 

  28. Rubinsky B, Onik G, Mikus P. Irreversible electroporation: a new ablation modality clinical implications. Technol Cancer Res Treat. 2007;6(1):37–48.

    PubMed  Google Scholar 

  29. European Pharmacopoeia, 5th edition. Test for efficiency of antimicrobial preservations. 2005; Supplement 5.1.3.

  30. Hulsheger H, Potel J, Niemann EG. Killing of bacteria with electric pulses of high field strength. Radiat Environ Biophys. 1981;20(1):53–65.

    Article  PubMed  CAS  Google Scholar 

  31. Peleg M. A model of microbial survival after exposure to pulse electic field. J Sci Food Agric. 1995;67(1):93–9.

    Article  CAS  Google Scholar 

  32. van Boekel M. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol. 2002;74(1-2):139–59.

    Article  PubMed  Google Scholar 

  33. Saulis G, Venslauskas MS, Naktinis J. Kinetics of pore resealing in cell membrane after electroporation. Bioelectrochem Bioenerg. 1991;26(1):1–13.

    Article  Google Scholar 

  34. Saulis G. Pore disappearance in a cell after electroporation. Theoretical simulation and comparison with experiments. Biophys J. 1997;73(3):1299–309.

    Article  PubMed  CAS  Google Scholar 

  35. Kinosita K, Tsong TY. Voltage-induced pore formation and hemolyses of human erythrocytes. Biochim Biophys Acta. 1977;471(2):227–42.

    Article  PubMed  CAS  Google Scholar 

  36. Tekle E, Astumian RD, Chock PB. Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA. 1994;91(24):11512–16.

    Article  PubMed  CAS  Google Scholar 

  37. Ziv R, Steinhardt Y, Pelled G, Gazit D, Rubinsky B. Micro-electroporation of mesenchymal stem cells with alternating electrical current pulses. Biomed Microdevices. 2009;11:95–101.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study is supported by the Israel Science Foundation grant 403/06 (AG and BR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Belkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golberg, A., Belkin, M. & Rubinsky, B. Irreversible Electroporation for Microbial Control of Drugs in Solution. AAPS PharmSciTech 10, 881–886 (2009). https://doi.org/10.1208/s12249-009-9277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9277-3

Key words

Navigation