Nanoemulsion as a Potential Ophthalmic Delivery System for Dorzolamide Hydrochloride

Abstract

Dilutable nanoemulsions are potent drug delivery vehicles for ophthalmic use due to their numerous advantages as sustained effect and high ability of drug penetration into the deeper layers of the ocular structure and the aqueous humor. The aim of this article was to formulate the antiglaucoma drug dorzolamide hydrochloride as ocular nanoemulsion of high therapeutic efficacy and prolonged effect. Thirty-six systems consisting of different oils, surfactants, and cosurfactants were prepared and their pseudoternary-phase diagrams were constructed by water titration method. Seventeen dorzolamide hydrochloride nanoemulsions were prepared and evaluated for their physicochemical and drug release properties. These nanoemulsions showed acceptable physicochemical properties and exhibited slow drug release. Draize rabbit eye irritation test and histological examination were carried out for those preparations exhibiting superior properties and revealed that they were nonirritant. Biological evaluation of dorzolamide hydrochloride nanoemulsions on normotensive albino rabbits indicated that these products had higher therapeutic efficacy, faster onset of action, and prolonged effect relative to either drug solution or the market product. Formulation of dorzolamide hydrochloride in a nanoemulsion form offers, thus, a more intensive treatment of glaucoma, a decrease in the number of applications per day, and a better patient compliance compared to conventional eye drops.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Hughes PM, Mitra AK. Overview of ocular drug delivery and iatrogenic ocular cytopathologies. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker; 1993. p. 1–27.

    Google Scholar 

  2. 2.

    Patton TF, Robinson JR. Quantitative precorneal disposition of topically applied pilocarpine nitrate in rabbit eyes. J Pharm Sci. 1976;65:1295–301.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Sieg JW, Robinson JR. Vehicle effects on ocular drug bioavailability II: evaluation of pilocarpine. J Pharm Sci. 1977;66:1222–8.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Chein YW, Cabana BE, Mares SE. Ocular controlled release drug administration. In: Chein YW, editor. Novel drug delivery systems; fundamentals, development concepts, biomedical assessments (drugs and the pharmaceutical sciences), vol. 14. New York: Marcel Dekker; 1982. p. 13–55.

    Google Scholar 

  5. 5.

    Middleton DL, Leung SS, Robinson JR. Ocular bioadhesive delivery systems. In: Lenaerts V, Gurny R, editors. Bioadhesive drug delivery systems. Boca Raton: CRC; 1990. p. 179–202.

    Google Scholar 

  6. 6.

    Desai SD, Blanchard J. Ocular drug formulation and delivery. In: Swarbick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology, vol. 11. New York: Marcel Dekker; 1994. p. 43–75.

    Google Scholar 

  7. 7.

    Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, Gurny R. Topical use of chitosan in ophthalmology: tolerance, assessment and evaluation of precorneal retention. Int J Pharm. 1999;180:185–93.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Munier A, Gunning T, Kenny D, O’Keefe M. Causes of blindness in the adult population of the Republic of Ireland. Br J Ophthalmol. 1998;82:630–3.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Blomdahl S, Calissendorff BM, Tengrowth B, Wallin O. Blindness in glaucoma patients. Acta Ophthalmol (Copenh). 1997;75:589–91.

    CAS  Google Scholar 

  10. 10.

    Kaur IP, Smitha R, Aggarwal D, Kapil M. Acetazolamide: future perspective in topical glaucoma therapeutics. Int J Pharm. 2002;248:1–14.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Hoyng PF, van Beek LM. Pharmacological therapy for glaucoma: a review. Drugs. 2000;59:411–34.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Maren TH. The development of topical carbonic anhydrase inhibitors. Glaucoma. 1995;4:49–62.

    Google Scholar 

  13. 13.

    Sugrue MF. The preclinical pharmacology of dorzolamide hydrochloride, a topical carbonic anhydrase inhibitor. J Ocul Pharmacol Ther. 1996;12:363–76.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res. 2000;19:87–112.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Sigurdsson HH, Stefansson E, Gudmundsdottir E, Eysteinsson T, Thorsteinsdottir M, Loftsson T. Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration. J Control Release. 2005;102:255–62.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Quint MP, Grove J, Thomas SM. Dorzolamide hydrochloride. In: Brittain HG, editor. Analytical profiles of drug substances and excipients, vol. 26. New York: Academic; 1999. p. 283–316.

    Google Scholar 

  17. 17.

    Rusk C, Sharpe E, Laurence J, Polis A, Adamsons I. Comparison of the efficacy and safety of 2% dorzolamide and 0.5% betaxolol in the treatment of elevated intraocular pressure. Dorzolamide comparison study group. Clin Ther. 1998;20:454–66.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Silver LH. Ocular comfort of brinzolamide 1.0% ophthalmic suspension compared with dorzolamide 2.0% ophthalmic solution: results from two multicenter comfort studies. Brinzolamide Comfort Study Group. Surv Ophthalmol. 2000;44(Suppl 2):S141–45.

    PubMed  Article  Google Scholar 

  19. 19.

    Salminen L. Review: systemic absorption of topically applied ocular drugs in humans. J Ocul Pharmacol Ther. 1990;6:243–9.

    Article  CAS  Google Scholar 

  20. 20.

    Baudouin C. Side effects of antiglaucomatous drugs on the ocular surface. Curr Opin Ophthalmol. 1996;7:80–6.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Arici MK, Arici DS, Topalkara A, Guler C. Adverse effects of topical antiglaucoma drugs on the ocular surface. Clin Experiment Ophthalmol. 2000;28:113–7.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Konowal A, Morrison JC, Brown SV, Cooke DL, Maguire LJ, Verdier DV, et al. Irreversible corneal decompensation in patients treated with topical dorzolamide. Am J Ophthalmol. 1999;127:403–6.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Silva-Cunha A, Fialho SL, Carneiro LB, Oréfice F. Microemulsões como veículos de drogas para administração ocular tópica. Arq Bras Oftalmol. 2003;66:385–91.

    Google Scholar 

  24. 24.

    Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM. W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J Control Release. 2006;111:145–52.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res. 2002;21:15–34.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Garti N, Aserin A, Tiunova I, Fanun MA. DSC study of water behavior in water-in-oil microemulsions stabilized by sucrose esters and butanol. Colloids Surf A Physicochem Eng Asp. 2000;170:1–18.

    Article  CAS  Google Scholar 

  27. 27.

    Moreno MA, Ballesteros MP, Frutos P. Lecithin-based oil-in-water microemulsions for parenteral use: pseudoternary phase diagrams, characterization and toxicity studies. J Pharm Sci. 2003;92:1428–37.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66:227–43.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int J Pharm. 2001;229:29–36.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Wu C, Qi H, Chen W, Huang C, Su C, Li W, et al. Preparation and evaluation of a carbopol/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi. 2007;127:183–91.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm Acta Helv. 1972;47:594–607.

    PubMed  CAS  Google Scholar 

  32. 32.

    Draize JH, Woodard G, Calvey HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82:377–90.

    CAS  Google Scholar 

  33. 33.

    Hughes WFJ. The tolerance of rabbit cornea for various chemical substances. Bull Johns Hopkins Hosp. 1948;82:338–49.

    PubMed  Google Scholar 

  34. 34.

    Laillier J, Plazonnet B, Le Douarec JC. Evaluation of an objective method of studying eye irritation. Proc Eur Soc Toxicol. 1976;17:336–50.

    CAS  Google Scholar 

  35. 35.

    Conquet P, Durand G, Laillier J, Plazonnet B. Evaluation of ocular eye irritation in the rabbit: objective versus subjective assessment. Tox App Pharmacol. 1977;39:129–39.

    Article  CAS  Google Scholar 

  36. 36.

    Yamaguchi M, Yasueda S, Isowaki A, Yamamoto M, Kimura M, Inada K, et al. Formulation of an ophthalmic lipid emulsion containing an anti-inflammatory steroidal drug, difluprednate. Int J Pharm. 2005;301:121–8.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Alany RG, Tucker IG, Davies NM, Rades T. Characterizing colloidal structures of pseudoternary phase diagrams formed by oil/water/amphiphile systems. Drug Dev Ind Pharm. 2001;27:31–8.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Chemicals BF. Cremophor® EL. Technical leaflet, ME 074 e. Ludwigshafen: BASF Fine Chemicals; 1997.

    Google Scholar 

  39. 39.

    Kommuru TR, Gurley B, Khan MA, Reddy IK. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm. 2001;212:233–46.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Grant WM, Schuman JS. Toxicology of the eye. 4th ed. Springfield: Charles C. Thomas; 1993.

    Google Scholar 

  41. 41.

    Bietti GB, Virno M, Pecori-Giraldi J. Propylene glycol: a new osmotic agent for ophthalmic uses. Doc Ophthalmol. 1973;34:77–92.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Tamilvanan S, Benita S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur J Pharm Biopharm. 2004;58:357–68.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Aboofazeli R, Lawrence MJ. Investigations into the formation and characterization of phospholipid microemulsions. II. Pseudo-ternary phase diagrams of systems containing water–lecithin–isopropyl myristate and alcohol: influence of purity of lecithin. Int J Pharm. 1994;106:51–61.

    Article  CAS  Google Scholar 

  44. 44.

    Trotta M, Gallarate M, Pattarino F, Carlotti ME. Investigation of the phase behaviour of systems containing lecithin and 2-acyl lysolecithin derivatives. Int J Pharm. 1999;190:83–9.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Warisnoicharoen W, Lansley AB, Lawrence MJ. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour. Int J Pharm. 2000;198:7–27.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Huibers PD, Shah D. Evidence for synergism in non-ionic surfactant mixtures: enhancement of solubilization in water-in-oil microemulsions. Langmuir. 1997;13:5762–5.

    Article  CAS  Google Scholar 

  47. 47.

    Engels T, Forster T, Rybinsko WV. The influence of coemulsifier type on the stability of oil-in-water emulsions. Colloids Surf A Physicochem Eng Aspects. 1995;99:141–9.

    Article  CAS  Google Scholar 

  48. 48.

    Weingarten C, Magalhaes NSS, Baszkin A, Benita S, Seiller M. Interaction of a nonionic ABA copolymer surfactant with phospholipid monolayers: possible relevance to emulsion stabilization. Int J Pharm. 1991;75:171–9.

    Article  CAS  Google Scholar 

  49. 49.

    Ninham BW, Chen SJ, Evans DF. Role of oils and other factors in microemulsion design. J Phys Chem. 1984;88:5855–7.

    Article  CAS  Google Scholar 

  50. 50.

    Taha MO, Abdel-Halim H, Al-Ghazawi M, Khalil E. QSPR modeling of pseudoternary microemulsions formulated employing lecithin surfactants: application of data mining, molecular and statistical modeling. Int J Pharm. 2005;295:135–55.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Kawakami K, Yoshikawa T, Hayashi T, Nishihara Y, Masuda K. Microemulsion formulation for enhanced absorption of poorly soluble drugs. II. In vivo study. J Control Release. 2002;81:75–82.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    HaBe A, Keipert S. Development and characterization of microemulsions for ocular application. Eur J Pharm Biopharm. 1997;43:179–83.

    Article  Google Scholar 

  53. 53.

    Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Control Release. 2004;98:427–36.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Tenjarla S. Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst. 1999;16:461–521.

    PubMed  CAS  Google Scholar 

  55. 55.

    Zignani M, Tabatabay C, Gurny R. Topical semi-solid drug delivery: kinetics and tolerance of ophthalmic hydrogels. Adv Drug Deliv Rev. 1995;16:51–61.

    Article  CAS  Google Scholar 

  56. 56.

    Radomska-Soukharev A, Wojciechowska J. Microemulsions as potential ocular drug delivery systems: phase diagrams and physical properties depending on ingredients. Acta Pol Pharm. 2005;62:465–71.

    PubMed  CAS  Google Scholar 

  57. 57.

    Fialho SL, da Silva-Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Experiment Ophthalmol. 2004;32:626–32.

    PubMed  Article  Google Scholar 

  58. 58.

    Ciba-Geigy. Wissenschaftliche Tabellen Geigy. 8th ed. Basel: Ciba-Geigy; 1997. Through Fialho SL, da Silva-Cunha A. New vehicle based on microemulsion for topical ocular administration of dexamethasone. Clin Experiment Ophthalmol. 2004;32:626-32.

    Google Scholar 

  59. 59.

    Keipert S, Siebenbrodt I, Lüders F, Bornschein M. Mikroemulsionen und ihre. potenzielle pharmazeutische Nutzung. Pharmazie. 1989;44:433–44.

    PubMed  CAS  Google Scholar 

  60. 60.

    Miller D. Measurement of the surface tension of tears. Arch Ophthalmol. 1969;82:368–71.

    PubMed  CAS  Google Scholar 

  61. 61.

    Lin SP, Brenner H. Marangoni convection in a tear film. J Colloid Interface Sci. 1982;85:59–65.

    Article  Google Scholar 

  62. 62.

    Ciba-Geigy. Wissenschaftliche Tabellen Geigy. 8th ed. Basel: Ciba-Geigy; 1977.

    Google Scholar 

  63. 63.

    Hasse A, Keipert S. Development and characterization of microemulsions for ocular application. Eur J Pharm Biopharm. 1997;43:179–83.

    Article  CAS  Google Scholar 

  64. 64.

    Mathis GA. Clinical ophthalmic pharmacology and therapeutics: ocular drug delivery. In: Gelatt KN, editor. Veterinary ophthalmology. Orlando: Lippincott Williams & Wilkins; 1999. p. 291–7.

    Google Scholar 

  65. 65.

    Van Ooteghem MM. Formulations of ophthalmic solutions and suspensions. Problems and advantages. In: Edman P, editor. Biopharmaceutics of ocular drug delivery. Boca Raton: CRC; 1993. p. 31–2.

    Google Scholar 

  66. 66.

    Polish Pharmaceutical Society. Polish Pharmacopoeia V, vol. 3. Warsaw: Polish Pharmaceutical Society; 1993. p. 39.

    Google Scholar 

  67. 67.

    Terry JE, Hill RM. Human tear osmotic pressure, diurnal variation and closed eye. Arch Ophthalmol. 1978;96:120–2.

    PubMed  CAS  Google Scholar 

  68. 68.

    Rhee YS, Choi JG, Park ES, Chi SC. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm. 2001;228:161–70.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Walters KA, Brain KR, Green DM, James VG, Watkinson AC, Sands RH. Comparison of the transdermal delivery of estradiol from two gel formulations. Maturitas. 1998;29:189–95.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Lee PJ, Langer R, Shastri VP. Novel microemulsion enhancer formulation for simultaneous transdermal delivery of hydrophilic and hydrophobic drugs. Pharm Res. 2003;20:264–9.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Roggeband R, York M, Pericoi M, Braun W. Eye irritation responses in rabbit and man after single applications of equal volumes of undiluted model liquid detergent products. Food Chem Toxicol. 2000;38:727–34.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Muchtar S, Abdulrazik M, Frucht-Pery J, Benita S. Ex vivo permeation study of indomethacin from a submicron emulsion through albino rabbit cornea. J Control Release. 1997;44:55–64.

    Article  CAS  Google Scholar 

  73. 73.

    Mainardes RM, Urban MC, Cinto PO, Khalil NM, Chaud MV, Evangelista RC, et al. Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets. 2005;6:363–71.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    van der Bijl P, van Eyk AD, Meyer D. Effects of three penetration enhancers on transcorneal permeation of cyclosporine. Cornea. 2001;20:505–8.

    PubMed  Article  Google Scholar 

  75. 75.

    Liu Z, Li J, Nie S, Guo H, Pan W. Effects of Transcutol P on the corneal permeability of drugs and evaluation of its ocular irritation of rabbit eyes. J Pharm Pharmacol. 2006;58:45–50.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45:89–121.

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Kaur IP, Smitha R. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm. 2002;28:353–69.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Yu W, Tabosa do Egito ES, Barratt G, Fessi H, Devissaguet JP, Puisieux F. A novel approach to the preparation of injectable emulsions by a spontaneous emulsification process. Int J Pharm. 1993;89:139–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the generous supply of dorzolamide hydrochloride by Jamjoom Pharma, Jeddah, KSA and the kind help for assessment of the ocular irritation test by Dr. Maali A. Halim, Faculty of Medicine, Cairo University. We also acknowledge the financial support provided by the National Research Center, Egypt.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hussein O. Ammar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ammar, H.O., Salama, H.A., Ghorab, M. et al. Nanoemulsion as a Potential Ophthalmic Delivery System for Dorzolamide Hydrochloride. AAPS PharmSciTech 10, 808 (2009). https://doi.org/10.1208/s12249-009-9268-4

Download citation

Key words

  • dorzolamide hydrochloride
  • glaucoma
  • nanoemulsion
  • pharmacodynamic
  • physicochemical characterization