Skip to main content
Log in

Elucidating Raw Material Variability—Importance of Surface Properties and Functionality in Pharmaceutical Powders

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study is to illustrate, with a controlled example, the influence of raw material variability on the excipient’s functionality during processing. Soluble starch was used as model raw material to investigate the effect of variability on its compaction properties. Soluble starch used in pharmaceutical applications has undergone a purification procedure including washing steps. In this study, a lot of commercially available starch was divided into two parts. One was left intact and the other was subjected to an extra washing step. The two resulting lots were subjected to a series of physical characterization tests typical of those used to qualify raw materials. The two resulting lots gave virtually identical results from the tests. From the physical testing point of view, the two lots can be considered as two equivalent lots of the same excipient. However, when tested for their functionality when subjected to a compaction process, the two lots were found to be completely different. The compaction properties of the two lots were distinctly different under all environmental and processing conditions tested. From the functionality point of view, the two lots are two very different materials. The similar physical testing results but different functionality can be reconciled by considering the surface properties of the powders. It was found that the washing step significantly altered the surface energetic properties of the excipient. The washed lot consistently produced stronger compacts. These results are attributable to the measurably higher surface energy of induced by the additional washing step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bochner F, Tyrer JH, Hooper WD, Eadie MJ. Factors involved in an outbreak of phenytoin intoxication. J Neurol Sci. 1972;16(4):481–7.

    Article  PubMed  CAS  Google Scholar 

  2. Tyrer JH, Eadie MJ, Sutherla JM, Hooper WD. Outbreak of anticonvulsant intoxication in an Australian city. Br Med J. 1970;4(5730):271–3.

    Article  PubMed  CAS  Google Scholar 

  3. Landin M, Gonzalez MP, Souto C, Concheiro A, Gomezamoza JL, Martinezpacheco R. Comparison of 2 varieties of microcrystalline cellulose as filler-binders. 2. Hydrochlorothiazide tablets. Drug Dev Ind Pharm. 1993;19(10):1211–20.

    Article  CAS  Google Scholar 

  4. Landin M, Martinezpacheco R, Gomezamoza JL, Souto C, Concheiro A, Rowe RC. Effect of country-of-origin on the properties of microcrystalline cellulose. Int J Pharm. 1993;91(2–3):123–31.

    Article  CAS  Google Scholar 

  5. Landin M, Martinezpacheco R, Gomezamoza JL, Souto C, Concheiro A, Rowe RC. Influence of microcrystalline cellulose source and batch variation on the tabletting behavior and stability of prednisone formulations. Int J Pharm. 1993;91(2–3):143–9.

    Article  CAS  Google Scholar 

  6. Landin M, Martinezpacheco R, Gomezamoza JL, Souto C, Concheiro A, Rowe RC. Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. Int J Pharm. 1993;91(2-3):133–41.

    Article  CAS  Google Scholar 

  7. Landin M, Vazquez MJ, Souto C, Concheiro A, Gomezamoza JL, Martinezpacheco R. Comparison of 2 varieties of microcrystalline cellulose as filler-binders. 1. Prednisone tablets. Drug Dev Ind Pharm. 1992;18(3):355–68.

    Article  CAS  Google Scholar 

  8. Symecko CW, Rhodes CT. The effect of compaction force and type of pregelatinized starch on the dissolution of acetaminophen. Drug Dev Ind Pharm. 1997;23(3):229–38.

    Article  CAS  Google Scholar 

  9. Doelker E. Comparative compaction properties of various microcrystalline cellulose types and generic products. Drug Dev Ind Pharm. 1993;19(17–18):2399–471.

    Article  CAS  Google Scholar 

  10. Sam T. Regulatory implications of excipient changes in medicinal products. Drug Inf J. 2000;34(3):875–94.

    Google Scholar 

  11. Maincent P. Potential problems when switching from one excipient to another in drug formulation. Therapie. 1999;54(1):5–10.

    PubMed  CAS  Google Scholar 

  12. R. B. Casagrande, S. R. Georgetti, W. A. Verri, J. R. Jabor, A. C. Santos, and M. J. V. Fonseca. Evaluation of functional stability of quercetin as a raw material and in different topical formulations by its antilipoperoxidative activity. AAPS PharmSciTech 7(1), (2006).

  13. Timmins P, Browning I, Delargy AM, Forrester JW, Sen H. Effect of active raw-material variability on tablet production—physicochemical, physicomechanical and pilot-plant studies. Drug Dev Ind Pharm. 1986;12(8–9):1293–307.

    Article  CAS  Google Scholar 

  14. Barra J, Somma R. Influence of the physicochemical variability of magnesium stearate on its lubricant properties: possible solutions. Drug Dev Ind Pharm. 1996;22(11):1105–20.

    Article  CAS  Google Scholar 

  15. Bracconi P, Andres C, Ndiaye A. Structural properties of magnesium stearate pseudopolymorphs: effect of temperature. Int J Pharm. 2003;262(1–2):109–24.

    Article  PubMed  CAS  Google Scholar 

  16. Bracconi P, Andres C, N'Diaye A, Pourcelot Y. Thermal analyses of commercial magnesium stearate pseudopolymorphs. Thermochim Acta. 2005;429(1):43–51.

    Article  CAS  Google Scholar 

  17. Zhao N, Augsburger LL. The influence of product brand-to-brand variability on superdisintegrant performance: a case study with croscarmellose sodium. Pharm Dev Technol. 2006;11(2):179–85.

    Article  PubMed  CAS  Google Scholar 

  18. Whiteman M, Yarwood RJ. Variations in lactose NF from 2 different sources and their influence on tablet properties. Drug Dev Ind Pharm. 1990;16(11):1815–27.

    Article  CAS  Google Scholar 

  19. O'Neil MJ. The Merck index : an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station: Merck; 2001. p. 8878.

    Google Scholar 

  20. Hoover R. Acid-treated starches. Food Rev Int. 2000;16(3):369–92.

    Article  CAS  Google Scholar 

  21. Srichuwong A, Isono N, Mishima T, Hisamatsu M. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. Int J Biol Macromol. 2005;37(3):115–21.

    Article  PubMed  CAS  Google Scholar 

  22. Wierik G, Eissens AC, Besemer AC, Lerk CF. Preparation, characterization, and pharmaceutical application of linear dextrins. 1. Preparation and characterization of amylodextrin, metastable amylodextrins, and metastable amylose. Pharm Res. 1993;10(9):1274–9.

    Article  Google Scholar 

  23. ASTM E 104-02, Standard practice for maintaining constant relative humidity by means of aqueous solutions. 2002, ASTM International.

  24. Amin MCI, Fell JT. Tensile strength and bonding in compacts: a comparison of diametral compression and three-point bending for plastically deforming materials. Drug Dev Ind Pharm. 2002;28(7):809–13.

    Article  PubMed  CAS  Google Scholar 

  25. Stanley P. Mechanical strength testing of compacted powders. Int J Pharm. 2001;227(1–2):27–38.

    Article  PubMed  CAS  Google Scholar 

  26. Tye CK, Sun CC, Amidon GE. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J Pharm Sci. 2005;94(3):465–72.

    Article  PubMed  CAS  Google Scholar 

  27. Joiris E, Di Martino P, Berneron C, Guyot-Hermann AM, Guyot JC. Compression behavior of orthorhombic paracetamol. Pharm Res. 1998;15(7):1122–30.

    Article  PubMed  CAS  Google Scholar 

  28. Sun CQ, Grant DJW. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm Res. 2001;18(3):274–80.

    Article  PubMed  CAS  Google Scholar 

  29. Heckel RW. An analysis of powder compaction phenomena. Trans Metall Soc AIME. 1961;221(5):1001–8.

    Google Scholar 

  30. Heckel RW. Density–pressure relationships in powder compaction. Trans Metall Soc AIME. 1961;221(4):671–5.

    CAS  Google Scholar 

  31. Ryshkewitch E. Compression strength of porous sintered alumina and zirconia, 9th Communication to Ceramography. J Am Ceram Soc. 1953;36(2):65–8.

    Article  Google Scholar 

  32. Newton JM, Mashadi AB, Podczeck F. The mechanical-properties of an homologous series of benzoic-acid esters. Eur J Pharm Biopharm. 1993;39(4):153–7.

    CAS  Google Scholar 

  33. Schultz J, Lavielle L, Martin C. The role of the interface in carbon-fiber epoxy composites. J Adhes. 1987;23(1):45–60.

    Article  CAS  Google Scholar 

  34. Mukhopadhyay P, Schreiber HP. Aspects of acid–base interactions and use of inverse gas-chromatography. Colloid Surf A—Physicochem Eng Asp. 1995;100:47–71.

    Article  CAS  Google Scholar 

  35. Cheetham NWH, Tao LP. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym. 1998;36(4):277–84.

    Article  CAS  Google Scholar 

  36. Bates S, Zografi G, Engers D, Morris K, Crowley K, Newman A. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm Res. 2006;23(10):2333–49.

    Article  PubMed  CAS  Google Scholar 

  37. Roberts RJ, Rowe RC, York P. The relationship between the fracture properties, tensile-strength and critical stress intensity factor of organic-solids and their molecular-structure. Int J Pharm. 1995;125(1):157–62.

    Article  CAS  Google Scholar 

  38. Sun CC. A material-sparing method for simultaneous determination of true density and powder compaction properties—aspartame as an example. Int J Pharm. 2006;326(1–2):94–9.

    Article  PubMed  CAS  Google Scholar 

  39. Gupta A, Peck GE, Miller RW, Morris KR. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy. J Pharm Sci. 2005;94(10):2301–13.

    Article  PubMed  CAS  Google Scholar 

  40. Sun CQ. A novel method for deriving true density of pharmaceutical solids including hydrates and water-containing powders. J Pharm Sci. 2004;93(3):646–53.

    Article  PubMed  CAS  Google Scholar 

  41. Nokhodchi A, Rubinstein MH. An overview of the effects of material and process variables on the compaction and compression properties of hydroxypropyl methylcellulose and ethylcellulose. STP Pharma Sci. 2001;11(3):195–202.

    CAS  Google Scholar 

  42. Suzuki T, Nakagami H. Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. Eur J Pharm Biopharm. 1999;47(3):225–30.

    Article  PubMed  CAS  Google Scholar 

  43. Nicolas V, Chambin O, Andres C, Rochat-Gonthier MH, Pourcelot Y. Preformulation: effect of moisture content on microcrystalline cellulose (Avicel PH-302) and its consequences on packing performances. Drug Dev Ind Pharm. 1999;25(10):1137–42.

    Article  PubMed  CAS  Google Scholar 

  44. Khan F, Pilpel N, Ingham S. The effect of moisture on the density, compaction and tensile strength of microcrystalline cellulose. Powder Technol. 1988;54(3):161–4.

    Article  CAS  Google Scholar 

  45. Petteri P, Jukka I. Porosity–pressure functions. In: Alderborn G, Nystrèom C, editors. Pharmaceutical powder compaction technology. New York: Marcel Dekker; 1996. p. 15. 610 p.

    Google Scholar 

  46. Shotton E, Obiorah BA. Effect of physical-properties on compression characteristics. J Pharm Sci. 1975;64(7):1213–6.

    Article  PubMed  CAS  Google Scholar 

  47. Wang CC. Mechanical properties and compaction properties of pharmaceutical pellets. Austin: The University of Texas at Austin; 1997. p. 254.

    Google Scholar 

  48. Nardin M, Papirer E. Relationship between vapor-pressure and surface-energy of liquids—application to inverse gas-chromatography. J Colloid Interface Sci. 1990;137(2):534–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

National Science Foundation 000364-EEC, Dane O. Kildsig Center for Pharmaceutical Processing Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Teresa Carvajal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamarthy, S.P., Pinal, R. & Carvajal, M.T. Elucidating Raw Material Variability—Importance of Surface Properties and Functionality in Pharmaceutical Powders. AAPS PharmSciTech 10, 780–788 (2009). https://doi.org/10.1208/s12249-009-9267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9267-5

Key words

Navigation