Skip to main content

Advertisement

Log in

Permeation of Four Oral Drugs Through Human Intestinal Mucosa

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The pharmaceutical industry is in need of rapid and accurate methods to screen new drug leads for intestinal permeability potential in the early stages of drug discovery. Excised human jejunal mucosa was used to investigate the permeability of the small intestine to four oral drugs, using a flow-through diffusion system. The four drugs were selected as representative model compounds of drug classes 1 and 3 according to the biopharmaceutics classification system (BCS). The drugs selected were zidovudine, propranolol HCl, didanosine, and enalapril maleate. Permeability values from our in vitro diffusion model were compared with the BCS permeability classification and in vivo and in vitro gastrointestinal drug permeability. The flux rates of the four drugs were influenced by the length of the experiment. Both class 1 drugs showed a significantly higher mean flux rate between 2 and 6 h across the jejunal mucosa compared to the class 3 drugs. The results are therefore in line with the drugs’ BCS classification. The results of this study show that the permeability values of jejunal mucosa obtained with the flow-through diffusion system are good predictors of the selected BCS class 1 and 3 drugs’ permeation, and it concurred with other in vitro and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. P. V. Balimane, S. Chong, and R. A. Morrison. Current methodologies used for evaluation of intestinal permeability and absorption. J. Pharmacol. Toxicol. Methods. 44:301–312 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. Y. Masaoka, Y. Tanaka, M. Kataoka, S. Sakuma, and S. Yamashita. Site of drug absorption after oral administration: Assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur. J. Pharm. Sci. 29:240–250 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. M. D. Hamalainen, and A. Frostell-Karlsson. Predicting the intestinal absorption potential of hits and leads. Drug Discov. Today: Technologies. 1:397–405 (2004).

    Article  Google Scholar 

  4. M. Cόrdoba-Diaz, M. Nova, B. Elorza, D. Cόrdoba-Diaz, J.R. Chantres, and M. Cόrdoba-Borrego. Validation protocol of an automated in-line flow-through diffusion equipment for in vitro permeation studies. J. Control. Release. 69:357–367 (2000).

    Article  Google Scholar 

  5. W. Ganong. Review of medical physiology, Appleton&Lange, Stamford, CT, 1995.

    Google Scholar 

  6. H. Lennernas. Animal data: The contributions of the Ussing Chamber and perfusion systems to predict human oral drug delivery in vivo. Adv. Drug Deliv. Rev. 59:1103–1120 (2007).

    Article  PubMed  Google Scholar 

  7. WHO website. http://www.who.int/medicines/services/expertcommittees/pharmprep/QAS04_093Rev4_final.pdf (accessed on 19/08/2008)

  8. P. Van der Bijl, A. D. Van Eyk, H. I. Seifart, F. De Jager, and C. M. M. Nel. Diffusion of diclofenac and piroxicam from commercially available gels through human skin. South African J. Physiother. 59:3–6 (2003).

    Google Scholar 

  9. A. D. Van Eyk, and P. Van der Bijl. Comparative permeability of various chemical markers through human vaginal and buccal mucosa as well as porcine buccal and mouth floor mucosa. Arch. Oral Biol. 49:387–392 (2004).

    Article  PubMed  Google Scholar 

  10. E. Basson, P. Van der Bijl, and A. D. Van Eyk. Transvaginal diffusion of synthetic peptides. Eur. J. Inflamm. 5:15–20 (2007).

    CAS  Google Scholar 

  11. H. Motulsky. Intuitive Biostatistics, Graphpad Software, New York, Oxford University Press, 1995.

    Google Scholar 

  12. G. Corti, F. Maestrelli, M. Cirri, S. Furlanetto, and P. Mura. Development and evaluation of an in vitro method for prediction of human drug absorption I. Assessment of artificial membrane composition. Eur. J. Pharm. Sci. 27:346–53 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. C. A. Knupp, W. C. Shyu, R. Dolin, F. T. Valentine, C. McLaren, R. R. Martin, K. A. Pittman, and R. H. Barbhaiya. Pharmacokinetics of didanosine in patients with acquired immunodeficiency syndrome or acquired immunodeficiency syndrome-related complex. Clin. Pharmacol. Ther. 49:523–535 (1991).

    PubMed  CAS  Google Scholar 

  14. G. L. Drusano, G. J. Yuen, G. Morse, T. P. Cooley, M. Seidlin, J. S. Lambert, H. A. Liebman, F. T. Valentine, and R. Dolin. Impact of bioavailability on determination of the maximal tolerated dose of 2′,3′-dideoxyinosine in phase I trials. Antimicrob. Agents Chemother. 36:1280–1283 (1992).

    PubMed  CAS  Google Scholar 

  15. S. L. Bramer, J. L. Au, and M. G. Wientjes. Gastrointestinal and hepatic first-pass elimination of 2’,3’-dideoxyinosine in rats. J. Pharmacol. Exp. Ther. 265:731–738 (1993).

    PubMed  CAS  Google Scholar 

  16. P. J. Sinko, J. P. Sutyak, G. D. Leesman, P. Hu, V. D. Makhey, H. Yu, and C. L. Smith. Oral absorption of anti-AIDS nucleoside analogues: 3. Regional absorption and in vivo permeability of 2′,3′-dideoxyinosine in an intestinal-vascular access port (IVAP) dog model. Biopharm. Drug Disp. 18:697–710 (1997).

    Article  CAS  Google Scholar 

  17. P. J. Sinko, and P. Hu. Determining intestinal metabolism and permeability for several compounds in rats. Implications on regional bioavailability in humans. Pharm. Res. 13:108–133 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. L. X. Yu, G. L. Amidon, and J. R. Crison. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int. J. Pharm. 140:111–118 (1996).

    Article  CAS  Google Scholar 

  19. J. Dressman, and J. Krämer. Pharmaceutical Dissolution Testing, Taylor&Francis Group, Boca Raton, USA, 2005.

    Google Scholar 

  20. Q. Q. Huang, S. Y. Yao, M. W. Ritzel, A. R. Patterson, C. E. Cass, and J. D. Young. Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. J. Biol. Chem. 269:17757–17760 (1994).

    PubMed  CAS  Google Scholar 

  21. N. Oulianova, D. Cheng, N. Heubert, and Y. Chen. Human oral drugs absorption is correlated to their in vitro uptake by brush border membrane vesicles. Int. J. Pharm. 336:115–121 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. P. J. Sinko, P. Hu, A. P. Waclawski, and N. R. Patel. Oral absorption of anti-AIDS nucleoside analogues. 1 Intestinal transport of didanosine in rat and rabbit preparations. J. Pharm. Sci. 84:959–965 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. G. Trapani, M. Franco, A. Trapani, A. Lopedota, A. Latrofa, E. Gallucci, S. Micelli, and G. Liso. Frog intestinal sac: a new in vitro method for the assessment of intestinal permeability. J. Pharm. Sci. 93:2909–2919 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. S. Yamashita, Y. Tanaka, Y. Endoh, Y. Taki, T. Sakane, T. Nadai, and H. Sezaki. Analysis of drug permeation across Caco-2 monolayer: implication for predicting in vivo drug absorption. Pharm. Res. 14:486–491 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. H. Vogelpoel, J. Welink, G. L. Amidon, H. E. Junginger, K. K. Midha, H. Moller, M. Olling, V. P. Shah, and D. M. Barends. Biowaiver monographs for immediate release solid oral dosage forms based on biopharmaceutics classification system (BCS) literature data: verapamil hydrochloride, propranolol hydrochloride, and atenolol. J. Pharm. Sci. 93:1945–1956 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. V. Pade, and S. Stavchansky. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J. Pharm. Sci. 87:1604–1607 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. H. Vogelpel, J. Welink, G. L. Amidon, H. E. Junginger, K. K. Midha, H. Moller, M. Olling, V. P. Shah, and D. M. Barends. Commentary. Biowaiver monographs for immediate release sold oral dosage forms based on biopharmaceutics classification system (BCS) literature data: Verapamil hydrochloride, propranolol hydrochloride, and atenolol. J. Pharm. Sci. 93:1945–1955 (2004).

    Article  Google Scholar 

  28. D. I. Friedman, and G. L. Amidon. Intestinal absorption mechanism of dipeptide angiotensin converting enzyme inhibitors of the lysyl-proline type: lisinopril and SQ 29,852. J. Pharm. Sci. 78:995–998 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. D. I. Friedman, and G. L. Amidon. Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharm. Res. 6:1043–1047 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. R. Borchardt. The application of cell culture systems in drug discovery and development editorial. J. Drug Target. 3:179–182 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. W. Rubas, N. Jezyk, and G. M. Grass. Comparison of the permeability characteristics of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm. Res. 10:113–118 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11:1358–1361 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. F. Li, L. Hong, C.-I. Mau, R. Chan, T. Hendricks, C. Dvorak, C. Yee, J. Harris, and T. Alfredson. Transport of levovirin prodrugs in the human Intestinal Caco-2 cell line. J. Pharm. Sci. 95:1318–1325 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. H. Lennernäs, S. Nylander, and A.-L. Ungell. Correlation of effective drug permeability measurements in vitro using the Ussing chamber and the human jejunal perfusion. Pharm. Res. 14:667–671 (1997).

    Article  PubMed  Google Scholar 

  35. D. Sun, H. Lennernäs, L. S. Welage, J. L. Barnett, C. P. Landowski, D. Foster, D. Fleisher, K. D. Lee, and G. L. Amidon. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm. Res. 19:1400–1416 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. H. H. Usansky, and P. J. Sinko. Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model: model development and evaluation and derivation of analytical solutions for k(a) and F(a). J. Pharmacol. Exp. Ther. 314:391–399 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. FDA Guidance for Industry. Waiver if in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system, Food and Drug Administration, Rockville, MD, 2000.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge Aspen Pharmacare (South Africa), for providing the four chemicals/drugs. We also thank the surgeons from the Department of Surgical Sciences, Tygerberg for supplying the small intestine specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erina Pretorius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pretorius, E., Bouic, P.J.D. Permeation of Four Oral Drugs Through Human Intestinal Mucosa. AAPS PharmSciTech 10, 270–275 (2009). https://doi.org/10.1208/s12249-009-9207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9207-4

Key words

Navigation