Skip to main content

Advertisement

Log in

Studies on Mefenamic Acid Microparticles: Formulation, In Vitro Release, and In Situ Studies in Rats

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, we investigated the in vitro characteristics of mefenamic acid (MA) microparticles as well as their effects on DNA damage. MA-loaded chitosan and alginate beads were prepared by the ionotropic gelation process. Microsponges containing MA and Eudragit RS 100 were prepared by quasi-emulsion solvent diffusion method. The microparticles were characterized in terms of particle size, surface morphology, encapsulation efficiency, and in vitro release profiles. Most of the formulation variables manifested an influence on the physical characteristics of the microparticles at varying degrees. We also studied the effects of MA, MA-loaded microparticles, and three different polymers on rat brain cortex DNA damage. Our results showed that DNA damage was higher in MA-loaded Eudragit microsponges than MA-loaded biodegradable chitosan or alginate microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Fang, S. Numajiri, D. Kobayashi, H. Ueda, K. Nakayama, H. Miyamae, and Y. Morimoto. Physicochemical and crystallographic characterization of mefenamic acid complexes with alkanolamines. J. Pharm. Sci. 93:144–154 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Y. Joo, H. Kim, R. Woo, C. Park et al. Mefenamic acid shows neuroprotective effects and improves cognitive impairment in in vitro and in vivo Alzheimer’s disease models. Mol. Pharmacol. 69:76–84 (2006).

    PubMed  CAS  Google Scholar 

  3. J. E. F. Reynolds. Martindale: The Extra Pharmacopoeia, 31rd ed., The Pharmaceutical Press, London, 1998, pp. 58–59.

    Google Scholar 

  4. M. G. Jelen, D. Jamnig, H. Schabus, W. Pipam, and R. Likar. A comparison of the efficacy and rate of side-effects of mefenamic acid and naproxen in adult patients following elective tonsillectomy: a randomized double-blind study. Acute Pain in press (2008).

  5. J. K. Lalla, and P. L. Ahuja. Drug targeting using non-magnetic and magnetic albumin-globulin mix microspheres of mefenamic acid. J. Microencapsul. 8:37–52 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. F. Sevgi, M. Ozyazıcı, B. Kaynarsoy, D. Ozyurt, and C. Pekçetin. Histological evaluation of drug-loaded alginate beads and Eudragit microspheres. Proceedings of the 13th Inter. Pharm. Technol. Symp., 10–13 Sept., 2006, Antalya, Turkey, pp. 135–136.

  7. F. Sevgi, B. Sarpaş, and A. Yurdasiper. The effect of tabletting on the release characteristics of mefenamic acid microspheres. European Conference on Drug Delivery and Pharmaceutical Technology, 10–12 May, 2004, Sevilla, Spain, p. 326.

  8. S. Gungor, A. Yıldız, Y. Ozsoy, E. Cevher, and A. Araman. Investigations on mefenamic acid sustained release tablets with water-insoluble gel. Farmaco. 58:397–401 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. F. Sevgi, B. Kaynarsoy, and G. Ertan. An antiinflammatory drug (mefenamic acid) incorporated in biodegradable alginate beads: development and optimization of the process using factorial design. Pharm. Dev. Technol. 13(1):5–13 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. FDA/CDER. Waiver of in vivo bioavailability and bioequivalance studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system. Guidance for Industry, August, 2000.

  11. G. Kimura, G. Betz, and H. Leuenberger. Influence of loading volume of mefenamic acid on granules and tablet characteristics using a compaction simulator. Pharm. Dev. Technol. 12:627–635 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. T. A. Tokumura. A screening system of solubility for drug design and discovery. Pharm. Technol. Japan. 16(13):19–27 (2000).

    Google Scholar 

  13. M. Yazdanian, K. Briggs, C. Jankovsky, and A. Hawi. The “high solubility” definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharm. Res. 21(2):293–299 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. M. S. Y. Khan, and M. Akhter. Glyceride derivatives as potential prodrugs: synthesis, biological activity and kinetic studies of glyceride derivatives of mefenamic acid. Pharmazie. 60(2):110–114 (2005).

    PubMed  CAS  Google Scholar 

  15. F. Sevgi, B. Kaynarsoy, M. Ozyazici, Ç. Pekcetin, and D. Özyurt. A comparative histological study of alginate beads as a promising controlled release delivery for mefenamic acid. Pharm. Dev. Technol. 13(5):387–392 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. M. Asanuma, S. Nishibayashi-Asanuma, I. Miyazaki, M. Kohno, and N. Ogawa. Neuroprotective effects of nonsteroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J. Neurochem. 76:1895–1904 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. G. M. Kasof, A. Mandelzys, S. D. Maika, and R. E. Hammer. Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos–lacZ transgenic rats. J. Neurosci. 15(6):4238–4249 (1995).

    PubMed  CAS  Google Scholar 

  18. H. A. Yamamoto, and P. V. Mohanan. Effect of alpha-ketoglutarate and oxaloacetate on brain mitocondrial DNA damage and seizures induced by kainic acid in mice. Toxicol. Lett. 143(2):115–122 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Kawashima, T. Niwa, T. Handa, H. Takeuchi, T. Iwamoto, and K. Itoh. Preparation of controlled release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method. J. Pharm. Sci. 78:68–72 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. Y. Kawashima, T. Niwa, T. Handa, H. Takeuchi, T. Hino, and Y. Ito. Control of prolonged drug release and compression properties of ibuprofen microsponges with acrylic polymer, Eudragit RS by changing their intraparticle porosity. Chem. Pharm. Bull. 40:196–201 (1992).

    PubMed  CAS  Google Scholar 

  21. F. Cui, M. Yang, Y. Jiang, D. Cun, W. Lin, Y. Fan, and Y. Kawashima. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method. J. Control. Release. 91:375–384 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. D. Perumal. Microencapsulation of ibuprofen and Eudragit RS 100 by the emulsion solvent diffusion technique. Int. J. Pharm. 218:1–11 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. T. Çomoğlu, N. Gönül, and T. Baykara. Preparation and in vitro evaluation of modified release ketoprofen microsponges. Farmaco. 58:101–106 (2003).

    Article  PubMed  Google Scholar 

  24. M. Orlu, E. Cevher, and A. Araman. Design and evaluation of colon spesific drug delivery system containing flurbiprofen microsponges. Int. J. Pharm. 318:103–117 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. S. Nacht, and M. Katz. The microsponge: a novel topical programmable delivery system. In D. W. Osborne, and A. H. Aman (eds.), Topical Drug Delivery Formulations, Marcel Dekker, New York, 1990, pp. 299–325.

    Google Scholar 

  26. K. Embil, and S. Nacht. The microsponge® delivery system (MDS): a topical delivery system with reduced irritancy incorporating multiple triggering mechanisms for the release of actives. J. Microencapsul. 13:575–588 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. M. Jelvahgari, M. R. Siahi-Shadbad, S. Azarmi, P. Martin Gary, and A. Nokhodchi. The microsponge delivery system of benzoil peroksit: preparation, characterization and release studies. Int. J. Pharm. 308:124–132 (2006).

    Article  Google Scholar 

  28. A. Yurdasiper, B. Kaynarsoy, and F. Sevgi. Preparation of flurbiprofen microsponges formulated in different gels and evaluation of antiinflammatory activity. 3rd World Congress of the Board of Pharmaceutical Sciences of FIP, Amsterdam, The Netherlands, 22–25 April, 2007, p. PSWC07L_ 1183.

  29. A. Yurdasiper, B. Kaynarsoy, and F. Sevgi. Preparation and dissolution kinetics of mefenamic acid microsponges. 8th Inter. Symp. on Pharm. Scien. (ISOPS-8), 13–16 June, 2006, Ankara, Turkey, number 91, p. 363.

  30. R. Bodmeier, K. H. Oh, and Y. Pramar. . Preparation and evaluation of drug-containing chitosan beads. Drug Dev. Ind. Pharm. 15:1475–1494 (1989).

    Article  CAS  Google Scholar 

  31. B. Arıca, S. Çalış, P. Atilla, N. T. Durlu, N. Çakar, H. S. Kaş, and A. A. Hıncal. In vitro and in vivo studies of ibuprofen-loaded biodegradable alginate beads. J. Microencapsul. 22(2):153–165 (2005).

    Article  PubMed  Google Scholar 

  32. M. Çetin, İ. Vural, Y. Çapan, and A. A. Hıncal. Effects of manufacturing parameters on the characteristics of the famotidine loaded chitosan beads and microspheres. Proceedings of the 12th Inter. Pharm. Technol. Symp. (IPTS-2004), 12–15 Sept., 2004, İstanbul, Turkey, pp. 109–110.

  33. Eudragit Data Sheeets, Röhm Pharma GmbH, Darmstadt, 1991.

  34. D. L. Kaplan, B. J. Wiley, J. M. Mayer, S. Arcidiacono, J. Keith, S. J. Lombardi, D. Ball, and A. L. Allen. In S. W. Shalaby (eds.), Biomedical polymers: designed-to-degrade systems. Hanser Publishers, New York, NY, 1994, Biosynthetic polysaccharides, pp. 189–212.

  35. W. R. Gombotz, and S. F. Wee. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31:267–285 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. L. Illum. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15:1326–1331 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. X. Z. Shu, and K. J. Zhu. The release behavior of brilliant blue from calcium-alginate gel beads coated by chitosan: the preparation method effect. Eur. J. Pharm. Biopharm. 53:193–201 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. C. M. Silva, J. A. Ribeiro, M. Figueiredo, D. Ferreira, and F. Veiga. Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS J. 7(4):E903–E913 (2006).

    Article  PubMed  Google Scholar 

  39. K. Ulbrich, T. Hekmatara, E. Herbert, and J. Kreuter. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur. J. Pharm. Biopharm. in press (2008).

  40. A. Hernandez, C. Paeile, H. Perez, S. Ruiz, and R. Soto Moyano. Cortical facilitatory effect of mefenamic acid. Arch. Int. Pharmacodyn. Ther. 244(1):100–106 (1980).

    PubMed  CAS  Google Scholar 

  41. M. Zhang, W. J. Shi, X. W. Fei, Y. R. Liu, and X. M. Zeng. Mefenamic acid bi-directionally modulates the transient outward K+ current in rat cerebellar granule cells. Toxicol. Appl. Pharmacol. 226(3):225–235 (2008).

    Article  PubMed  CAS  Google Scholar 

  42. T. Higuchi. Mechanism of sustained-action medication: theoretical analysis of rate of release of solid drug dispersed in solid matrices. J. Pharm. Sci. 52:1145–1149 (1963).

    Article  PubMed  CAS  Google Scholar 

  43. M. Gibaldi, and S. Feldman. Establishment of sink conditions in dissolution rate determinations, Theoretical considerations and application to non-disintegrating dosage forms. J. Pharm. Sci. 56:1238–1242 (1967).

    Article  PubMed  CAS  Google Scholar 

  44. F. Langenbucher. Linearization of dissolution rate curves by the Weibull distribution. J. Pharm. Pharmacol. 24:979–981 (1972).

    PubMed  CAS  Google Scholar 

  45. R. Bodmeier, and J. Wang. Microencapsulation of drugs with aqueous colloidal polymer dispersions. J. Pharm. Sci. 82:191–194 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant from Ege University (2003/ECZ/011). The authors thank Eczacıbaşı Pharmaceuticals Company, Istanbul, Turkey for kindly supplying the MA powder. We would like to thank Dr. Cengiz Tan from the Middle East Technical University (METU) for taking the scanning electron microphotographs. We would also like to thank Assoc. Prof. Dr. Zelihagül Değim from the Faculty of Pharmacy, Gazi University for her help for determining particle size.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhan Sevgi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevgi, F., Yurdasiper, A., Kaynarsoy, B. et al. Studies on Mefenamic Acid Microparticles: Formulation, In Vitro Release, and In Situ Studies in Rats. AAPS PharmSciTech 10, 104–112 (2009). https://doi.org/10.1208/s12249-008-9183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9183-0

Key words

Navigation