Skip to main content
Log in

Formulation of Sustained-Release Dosage Form of Verapamil Hydrochloride by Solid Dispersion Technique Using Eudragit RLPO or Kollidon®SR

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The release of verapamil hydrochloride from tablets with Eudragit RLPO or Kollidon®SR with different drug-to-polymer ratios were investigated with a view to develop twice-daily sustained-release dosage form by solid dispersion (SD) technique. The SDs containing Eudragit RLPO or Kollidon®SR at drug-polymer ratios of 1:1, 1:2, and 1:3 with verapamil hydrochloride were developed using solvent evaporation technique. The physical mixtures of drug and both polymers were prepared by using simple mixing technique at the same ratio as solid dispersion. The physicochemical properties of solid dispersion were evaluated by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The study of DSC, XRD, and FTIR could not show significant interaction between verapamil HCl and Kollidon®SR or Eudragit RLPO. The solid dispersions or physical mixtures were compressed to tablets. The tablets were prepared with solid dispersions containing Eudragit RLPO or Kollidon®SR, with all the official requirements of tablet dosage forms fulfilled. Tablets prepared were evaluated for the release of verapamil hydrochloride over a period of 12 h in pH 6.8 phosphate buffer using US Pharmacopoeia type II dissolution apparatus. The in vitro drug release study revealed that the tablet containing Eudragit has extended the release rate for 12 h whereas the tablet containing Kollidon®SR at the same concentration has extended the release rate up to 8 h. The in vitro release profile and the mathematical models indicate that release of verapamil hydrochloride can be effectively controlled from a tablet containing solid dispersions of Eudragit RLPO. The reduction of size fraction of the SD system from 200–250 to 75–125 μm had a great effect on the drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. J. Elliott. Circadian variation in the timing of stroke onset. A metaanalysis. Stroke. 29:992–996 (1998).

    PubMed  CAS  Google Scholar 

  2. M. Gallerani, R. Manfredini, L. Ricci, E. Grandi, R. Cappato, G. Calò, P. L Pareschi, and C. Fersini. Sudden death from pulmonary thromboembolism: chronobiological aspects. Eur. Heart J. 6:305–323 (1992).

    Google Scholar 

  3. M. Lovrecich, F. Nobile, F. Rubessa, and G. Zingone. Effect of ageing on the release of indomethacin from solid dispersion with eudragits. Int. J. Pharm. 131:247–255 (1996).

    Article  CAS  Google Scholar 

  4. A. A. Karnachi, R. A. De Hon, and M. A. Khan. Compression of indomethacin coprecipitates with polymer mixtures: effect of preparation methodology. Drug Dev. Ind. Pharm. 2112:1473–14483 (1995).

    Article  CAS  Google Scholar 

  5. A. H. Goldberg, M. Gibaldi, and J. L. Kanig. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. I. Theoretical considerations and discussion of literature. J. Pharm. Sci. 54:1145–1148 (1965).

    Article  PubMed  CAS  Google Scholar 

  6. W. L. Chiou, and S. Riegelman. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 60:1281–1302 (1971).

    Article  PubMed  CAS  Google Scholar 

  7. F. Sadeghi, H. Afrasiabi Garekani, and A. Sadr. Influence of polymer viscosity and plasticizer addition on ethylcellulose matrix characteristics prepared from solid dispersion system. STP Pharma. Sci. 13:105–110 (2003).

    CAS  Google Scholar 

  8. J. I. Hernandez, E. S. Ghalj, A. Malave, and A. Marti. Controlled release matrix of acetaminophen ethylcellulose solid dispersion. Drug Dev. Ind. Pharm. 20:1253–1265 (1994).

    Article  CAS  Google Scholar 

  9. K. Goracinova, L. J. Klisarova, and A. Simov. Physical characterization and dissolution properties of verapamil HCl coprecipitates. Drug Dev. Ind. Pharm. 21:383–391 (1995).

    Article  CAS  Google Scholar 

  10. M. A. Dabbagh, J. L. Ford, M. H. Rubinstein, and J. E. Hogan. Effect of polymer particle size, compaction pressure and hydrophilic polymers on drug release from matrices containing ethylcellulose. Int. J. Pharm. 140:85–95 (1996).

    Article  CAS  Google Scholar 

  11. P. R. Katikaneni, S. M. Upadrashta, S. H. Neau, and A. K. Mitra. Ethylcellulose matrix controlled release tablets of a water-soluble drug. Int. J. Pharm. 123:119–125 (1995).

    Article  CAS  Google Scholar 

  12. M. A. Khan, A. A. Karnachi, S. K. Singh, S. V. Sastry, S. M. Kislalioglu, and S. Bolton. Controlled release coprecipitates: formulation considerations. J. Cont. Rel. 37:131–141 (1995).

    Article  CAS  Google Scholar 

  13. S. Benita, A. Hoffman, and M. Donbrow. Microencapsulation of paracetamol using polyacrylate resins (eudragit retard), Kinetics of drug release and evaluation of kinetic model. J. Pharm. Pharmcol. 37:391–395 (1985).

    CAS  Google Scholar 

  14. C. Ho, and G. C. C. Hwang. Development of extended release solid dispersion of non-steroidal anti-inflammatory drugs with aqueous polymeric dispersions: optimization of drug release via a curve-fitting technique. Pharm. Res. 9:206–210 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. Technical Information, Kollidon®SR; BASF Aktiengesellschaft, Germany. 1–10 (1999).

  16. W. Daniels. Vinyl ester polymers, In transitions and relaxations to Zwitterionic Polymerisation, 2nd Ed., Encyclopedia of polymer science and Engineering, John Wiley and sons, New York. 17:402–425 (1989).

  17. J. Sahoo, P. N. Murthy, S. Biswal, A. K. Mahapatra, and S. K. Sahoo. Comparative study of propranolol hydrochloride release from matrix tablets with Kollidon®SR or hydroxy propyl methyl cellulose. AAPS Pharma. SciTech. 9(2):577–582 (2008).

    Article  CAS  Google Scholar 

  18. R. N. Saha, C. Sanjeev, and J. Sahoo. A comparative study of controlled release matrix tablets of diclofenac sodium, ciprofloxacin hydrochloride, and theophylline. Drug Delivery. 8:149–154 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. J. Sahoo, P. N. Murthy, S. Biswal, A. K. Mahapatra, and S. K. Sahoo. Preparation and release rate study of controlled release matrix tablets of verapamil hydrochloride using hydroxy propyl methyl cellulose. Int. J. Pharma. Ex. In press.

  20. J. Sahoo, P. N. Murthy, S. Biswal, A. K. Mahapatra, and S. K. Sahoo. Preparation and release rate study of controlled release matrix tablets of verapamil hydrochloride using Kollidon®SR. Pharm. BIT. XVI(2):119–124 (2007).

    Google Scholar 

  21. S. Biswal, J. Sahoo, P. N. Murthy, P. R. Giradkar, and J. G. Avari. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000. AAPS Pharma. SciTech. 9(2):563–570 (2008).

    Article  CAS  Google Scholar 

  22. P. Costa, and J. M. S. Lobo. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13:123–133 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. C. Rustichelli, M. C. Gamberini, V. Ferioli, and G. Gamberini. Properties of the racemic species of verapamil hydrochloride and gallopamil hydrochloride. Int. J. Pharm. 178:111–120 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. M. P. Oth, and A. J. Moes. Sustained release solid dispersions of indomethacin with Eudragit RS and RL. Int. J. Pharm. 55:157–164 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, J., Murthy, P.N., Biswal, S. et al. Formulation of Sustained-Release Dosage Form of Verapamil Hydrochloride by Solid Dispersion Technique Using Eudragit RLPO or Kollidon®SR. AAPS PharmSciTech 10, 27–33 (2009). https://doi.org/10.1208/s12249-008-9175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9175-0

Key words

Navigation