Skip to main content

Advertisement

Log in

Polymeric Matrix System for Prolonged Delivery of Tramadol Hydrochloride, Part I: Physicochemical Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Management of moderate or severe chronic pain conditions is the burden of clinicians dealing with patients trying to improve their quality of life and diminish their suffering. Although not a new opioid, tramadol has been recently rediscovered and widely used; this may be due to its favorable chronic safety and dependence profiles together with its high potency. Tramadol is a centrally acting analgesic with half-life of ~6 h; therefore, it requires frequent dosing. It is freely soluble in water; hence, judicious selection of retarding formulations is necessary. The current study is focused on the innovation of a novel, simple, monolayer, easy-to-use, cost-effective, and aesthetically acceptable bioadhesive transdermal delivery system overcoming the defects of the conventional “patch” as carrier system for tramadol, ensuring its adequate delivery, along with the physicochemical evaluation of the designed formulations. Monolithic tramadol matrix films of chitosan, different types of Eudragit®, and binary mixtures of both were prepared. As a single-polymer film, chitosan film showed best properties except for somewhat high moisture uptake capacity, insufficient strength and rapid release, and permeation. Polymer blends were monitored in order to optimize both properties and performance. Promising results were obtained, with chitosan–Eudragit® NE30D (1:1) film showing the most desirable combined, sufficiently rapid as well as prolonged release and permeation profiles along with satisfactory organoleptic and physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. D. Schim, and P. Stang. Overview of pain management. Pain. Practice. 4:S4–S18 (2004).

    Article  PubMed  Google Scholar 

  2. R. B. Raffa. Pharmacology of oral combination analgesics: rational therapy for pain. J. Clin. Pharm. Ther. 26:57–264 (2001).

    Google Scholar 

  3. H. Malonne, M. Coffiner, D. Fontaine, B. Sonet, A. Sereno, and A. Peretz. Long-term tolerability of tramadol LP, a once-daily formulation, in patients with osteoarthritis or low back pain. J. Clin. Pharm. Ther. 30:113–120 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. L. J. Scott, and C. M. Perry. Tramadol, a review of its use in perioperative pain. Drugs. 60(1):139–176 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. B. R. Olin. Central analgesics. In M. R. Riley (ed.), Drug Facts and Comparisons, 54th ed., Wolters Kluwer, St. Louis, 2000, pp. 817–818.

    Google Scholar 

  6. P. J. Fudala, and R. E. Johnson. Development of opioid formulations with limited diversion and abuse potential. Drug Alcohol Depend. 83S:S40–S47 (2006).

    Article  Google Scholar 

  7. B. Thomas, and B. Finnin. The transdermal revolution. Drug Disc. Today. 9(16):697–703 (2004).

    Article  CAS  Google Scholar 

  8. C. R. Lee, M. D. Tavish, and E. M. Sorkin. Tramadol: a preliminary review. Drugs. 46:313–340 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. G. G. Cameron, and J. W. McGinity. Controlled release theophylline tablet formulations containing acrylic resins. Drug Dev. Ind. Pharm. 13:1409–1427 (1987).

    Article  CAS  Google Scholar 

  10. Z. Lu, W. Chen, and J. Hamman. Chitosan–polycarbophil complexes in swellable matrix systems for controlled drug release. Curr. Drug Deliv. 4:257–263 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. G. N. Kalinkova. Studies of beneficial interactions between active medicaments and excipients in pharmaceutical formulations. Int. J. Pharm. 187:1–15 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. S. Senel, G. Ikinci, S. Kas, A. Yousefi-Rad, M. F. Sargon, and A. A. Hincal. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int. J. Pharm. 193:197–203 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. X. Zhang, Y. Wang, J. Wang, Y. Wang, and S. Li. Effect of pore former on the properties of casted film prepared from blends of Eudragit® NE 30 D and Eudragit® L 30 D-55. Chem. Pharm. Bull. 55(8):1261–1263 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. C. Amnuaikit, I. Ikeuchi, K. Ogawara, K. Higaki, and T. Kimura. Skin permeation of propranolol from polymeric film containing terpene enhancers for transdermal use. Int. J. Pharm. 289:167–178 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. S. B. Tiwari, T. K. Murthy, M. R. Pai, P. R. Mehta, and P. B. Chowdary. Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS PharmSciTech. 4(3):1–6 (2003).

    Article  Google Scholar 

  16. B. Mukhejee, S. Mahapatra, R. Gupta, B. Patra, A. Tiwari, and P. Arora. A comparison between povidone–ethylcellulose and povidone–eudragit transdermal dexamethasone matrix patches based on in vitro skin permeation. Eur. J. Pharm. Biopharm. 59:475–483 (2005).

    Article  Google Scholar 

  17. S. Blanchon, G. Couarraze, F. Rieg-Falson, G. Cohen, and F. Puisieux. Permeability of progesterone and a synthetic progestin through methacrylic films. Int. J. Pharm. 72:1–10 (1991).

    Article  CAS  Google Scholar 

  18. F. Lecomte, J. Siepmann, M. Walther, R. J. MacRae, and R. Bodmeier. Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer. J. Control. Release. 99:1–13 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. C. Tas, Y. Ozkan, A. Savaser, and T. Baykara. In vitro release studies of chlorpheniramine maleate from gels prepared by different cellulose derivatives. IL Farmaco. 58:605–611 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. S. N. Murthy, S. R. R. Hiremath, and K. L. K. Paranjothy. Evaluation of carboxymethyl guar films for the formulation of transdermal therapeutic systems. Int. J. Pharm. 272:11–18 (2004).

    Article  CAS  Google Scholar 

  21. C. Padula, S. Nicoli, P. Colombo, and P. Santi. Single-layer transdermal film containing lidocaine: modulation of drug release. Eur. J. Pharm. Biopharm. 66(3):422–428 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. C. M. Heard, S. Johnson, G. Moss, and C. P. Thomas. In vitro transdermal delivery of caffeine, theobromine, theophylline and catechin from extract of Guarana, Paullinia Cupana. Int. J. Pharm. 317(1):26–31 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. R. Panchagula, R. Bokalial, P. Sharma, and S. Khandavilli. Transdermal delivery of naloxone: skin permeation, pharmacokinetic, irritancy and stability studies. Int. J. Pharm. 293:213–223 (2005).

    Article  Google Scholar 

  24. I. Z. Schroeder, P. Franke, U. F. Schaefer, and C. Lehr. Development and characterization of film forming polymeric solutions for skin drug delivery. Eur. J. Pharm. Biopharm. 65:111–121 (2007).

    Article  Google Scholar 

  25. M. E. Aulton, and M. H. Abdul-Razzak. The mechanical properties of hydroxypropylmethylcellulose films derived from aqueous systems, part 1: the influence of plasticizers. Drug. Dev. Ind. Pharm. 7:649–668 (1981).

    Article  CAS  Google Scholar 

  26. A. M. Wokovich, S. Prodduturi, W. H. Doub, A. S. Hussain, and L. F. Buhse. TDDS adhesion as a critical safety, efficacy and quality attribute. Eur. J. Pharm. Biopharm. 64:1–8 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. S. Wittaya-areekul, C. Prahsarn, and S. Sungthongjeen. Development and in vitro evaluation of chitosan–eudragit RS 30D composite wound dressings. AAPS PharmSciTech. 7(1):Article30 (2006).

    Article  Google Scholar 

  28. C. Reumnan-Lopez, and R. Bodmeier. Mechanical and water vapor transmission properties of polysaccharide films. Drug. Dev. Ind. Pharm. 22:1201–1209 (1996).

    Article  Google Scholar 

  29. J. Viyoch, T. Sudedmark, W. Srema, and W. Suwongkrua. Development of hydrogel patch for controlled release of alpha-hydroxy acid contained in tamarind fruit pulp extract. Int. J. Cosmet. Sci. 27:89–99 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. M. R. Harris, and I. Ghebre-Sellassie. Aqueous polymeric coating for modified release oral dosage forms. In J. W. McGinity (ed.), Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, 2nd ed, Marcel Dekker, New York, 1997, pp. 81–100.

    Google Scholar 

  31. Eudragit® Handbook. Rohm GmbH, Darmstadt, Germany, 1997.

  32. J. Fang, Y. Huang, H. Lin, and Y. Tsai. Transdermal iontophoresis of sodium nonivamide acetate. IV. Effect of polymer formulations. Int. J. Pharm. 173:127–140 (1998).

    Article  CAS  Google Scholar 

  33. P. Rama Rao, and P. V. Diwan. Formulation and in vitro evaluation of polymeric films of diltiazem hydrochloride and indomethacin for transdermal administration. Drug Dev. Ind. Pharm. 24:327–336 (1998).

    Article  Google Scholar 

  34. A. D. Woolfson, D. F. McCafferty, and G. P. Moss. Development and characterization of a moisture-activated bioadhesive drug delivery system for a percutaneous local anesthesia. Int. J. Pharm. 169:83–94 (1998).

    Article  CAS  Google Scholar 

  35. A. Akhgari, F. Farahmand, A. Garekani, A. Sadeghi, and T. F. Vandamme. Permeability and swelling studies on free films containing inulin in combination with different polymethacrylates aimed for colonic drug delivery. Eur. J. Pharm. Sci. 28:307–314 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. J. Guo, G. W. Skinner, W. W. Harcum, and P. E. Barnum. Pharmaceutical applications of naturally occurring water-soluble polymers. PharmSciTech Today. 1(6):254–261 (1998).

    Article  CAS  Google Scholar 

  37. L. Perioli, V. Ambrogia, M. Riccia, S. Giovagnolia, M. Capuccellab, and C. Rossi. Development of mucoadhesive patches for buccal administration of ibuprofen. J. Cont. Rel. 99:73–82 (2004).

    Article  CAS  Google Scholar 

  38. S. Cafaggi, R. Leardi, B. Parodi, E. Caviglioli, E. Russo, and G. Bignardi. Preparation and evaluation of a chitosan salt–poloxamer 407 based matrix for buccal drug delivery. J. Control. Release. 102:159–169 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. P. Rama Rao, and P. V. Diwan. Permeability studies of cellulose acetate free films for transdermal use: influence of plasticizers. Pharm. Acta Helv. 72:47–51 (1997).

    Article  CAS  Google Scholar 

  40. J. Hadgraft. Skin, the final frontier. Int. J. Pharm. 224:1–18 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. E. Karavas, G. Ktistis, and E. Georgarakis. Miscibility behavior and formation mechanism of stabilized felodipine–polyvinylpyrrolidone amorphous solid dispersions. Drug Dev. Ind. Pharm. 31:473–489 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. A. L. Iordanskiia, M. M. Feldsteinb, J. Hadgraft, and N. A. Platea. Modeling of the drug delivery from a hydrophilic transdermal therapeutic system across polymer membrane. Eur. J. Pharm Biopharm. 49:287–293 (2000).

    Article  Google Scholar 

  43. Anon. TDDS—general release standards. Pharmacopeial Forum. 14:3860–3865 (1980).

    Google Scholar 

  44. K. A. Khan. The concept of dissolution efficiency. J. Pharm. Pharmacol. 27:48–49 (1975).

    PubMed  CAS  Google Scholar 

  45. M. C. Gohel, and M. K. Panchal. Novel use of similarity factors f 2 and S d for the development of diltiazem HCl modified-release tablets using a 32 factorial design. Drug Dev. Ind. Pharm. 28:77–87 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. N. Zaki, G. Awad, N. Mortada, and S. Abd El-Hady. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur. J. Pharm. Sci. 32:296–307 (2007).

    Article  PubMed  CAS  Google Scholar 

  47. W. I. Higuchi. The analysis of data on the medicament release from ointments. J. Pharm. Sci. 51:802–804 (1962).

    Article  PubMed  CAS  Google Scholar 

  48. R. W. Korsmeyer, R. Gurny, P. Buri, and N. A. Peppas. Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm. 15:25–35 (1983).

    Article  CAS  Google Scholar 

  49. N. A. Peppas. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 60:110–111 (1985).

    PubMed  CAS  Google Scholar 

  50. T. Hayachi, H. Kanbe, M. Okada, M. Suzuki, and Y. Ikeda. Formulation study and drug release mechanism of a new theophylline sustained-release preparation. Int. J. Pharm. 304(1–2):91–101 (2005).

    Google Scholar 

  51. J. E. Mockel, and C. Lippold. Zero-order drug release from hydrocolloid matrices. Pharm. Res. 10:1066–1070 (1993).

    Article  PubMed  CAS  Google Scholar 

  52. K. G. Hollenbeck. In J. Swarbrick, and J. C. Boylan. Encyclopedia of pharmaceutical technology, vol 10. Dekker, New York, 1994, pp. 67–69.

  53. M. Guyot, and F. Fawaz. Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int. J. Pharm. 204:171–182 (2000).

    Article  PubMed  CAS  Google Scholar 

  54. F. Cilurzo, L. Tosi, S. Pagani, and L. Montanari. Polymethacrylates as crystallization inhibitors in monolayer transdermal patches containing ibuprofen. Eur. J. Pharm. Biopharm. 60:61–66 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. F. Siepmann, V. Le Brun, and J. Siepmann. Drugs acting as plasticizers in polymeric systems: a quantitative treatment. J. Control. Release. 115:298–306 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. K. Moser, K. Kriwet, Y. N. Kalia, and R. H. Guy. Passive skin permeation enhancement and its quantification in vitro. Eur. J. Pharm. Biopharm. 52:103–112 (2001).

    Article  PubMed  CAS  Google Scholar 

  57. B. W. Barry. Dermatologic formulations: Percutaneous absorption, Marcel Dekker, New York, 1983.

    Google Scholar 

  58. G. L. Flynn, S. H. Yalkowsky, and T. J. Rosemann. Mass transport phenomena and models: theoretical concepts. J. Pharm. Sci. 63:479–510 (1974).

    Article  PubMed  CAS  Google Scholar 

  59. P. Lim, X. Liu, L. Kang, P. Ho, Y. Chan, and S. Chan. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int. J. Pharm. 311(1–2):157–164 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. A. Casiraghi, F. Cilurzo, and L. Montanari. In vitro skin permeation of soy isoflavones. Communication 55, Symposuim Skin and Formulation. Paris, 2003.

  61. K. Tojo, and T. Hikima. Bioequivalence of marketed transdermal delivery systems for tulobuterol. Biol. Pharm. Bull. 30(8):1576–1579 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. Ammar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammar, H.O., Ghorab, M., El-Nahhas, S.A. et al. Polymeric Matrix System for Prolonged Delivery of Tramadol Hydrochloride, Part I: Physicochemical Evaluation. AAPS PharmSciTech 10, 7–20 (2009). https://doi.org/10.1208/s12249-008-9167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9167-0

Key words

Navigation