Skip to main content

Advertisement

Log in

5-Fluorouracil-Loaded BSA Nanoparticles: Formulation Optimization and In Vitro Release Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Over the past few decades, there has been considerable interest in developing protein nanoparticles as drug delivery devices. The underlying rationale is their exceptional characteristics, namely biodegradability and nonantigenicity. Herein, phase separation method was used to prepare 5-fluorouracil-loaded bovine serum albumin (BSA) nanoparticles. Drug release was tracked by continuous flow dialysis technique. Effect of process variables on loading efficiency of 5-fluorouracil was investigated and optimized through Taguchi’s M16 design with the amount of entrapped drug as response. Optimum condition was found to be 2 mg/mL of 5-fluorouracil, 3.7 mL of added ethanol, 176 µL of glutaraldehyde, drug–protein incubation time of 30 min, and pH of 8.4 for 200 mg of BSA in 2 mL drug solution. pH had the most noticeable effect on the amount of entrapped drug, but glutaraldehyde had the least. Mean diameter and zeta potential of fabricated nanoparticles under these conditions were 210 nm and −31.7 mV, respectively. Drug-loaded BSA nanoparticles suspension maintained constant release of drug for 20 h under experimental conditions, so this colloidal drug carrier is capable of releasing drug in a sustained manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F. DeJaeghere, E. Doelker, and R. Gurny. Nanoparticles. In E. Mathiowitz (ed.), Encyclopedia of Controlled Drug Delivery, Wiley, Hoboken, 1999, pp. 641–664.

    Google Scholar 

  2. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53:283–318 (2001).

    PubMed  CAS  Google Scholar 

  3. B. G. Muller, H. Leuenberger, and T. Kissel. Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm. Res. 13:32–37 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. G. V. Patil. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev. Res. 58:219–247 (2003).

    Article  CAS  Google Scholar 

  5. M. Michaelis, K. Langer, S. Arnold, H. Doerr, J. Kreuter, and J. Cinatl. Pharmacological activity of DTPA linked to protein-based drug carrier systems. Biochem. Bioph. Res. Co. 323:1236–1240 (2004).

    Article  CAS  Google Scholar 

  6. C. Weber, C. Coester, J. Kreuter, and K. Langer. Desolvation process and surface characterization of protein nanoparticles. Int. J. Pharm. 194:91–102 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. M. Merodio, A. Arnedo, M. J. Renedo, and J. M. Irache. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur. J. Pharm. Sci. 12:251–259 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. M. Merodio, J. M. Irache, F. Valamanesh, and M. Mirshahi. Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials. 23:1587–1594 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. W. Lin, M. C. Garnett, S. S. Davis, E. Schacht, P. Ferruti, and L. Illum. Preparation and characterization of rose Bengal-loaded surface-modified albumin nanoparticles. J. Control. Rel. 71:117–126 (2001).

    Article  CAS  Google Scholar 

  10. S. S. D’Souza, and P. P. DeLuca. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res. 23:460–474 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. S. S. D’Souza, and P. P. DeLuca. Development of a dialysis in vitro release method for biodegradable microspheres. AAPS PharmSciTech. 62:E323–E328 (2005).

    Article  PubMed  Google Scholar 

  12. J. W. Kostanski, and P. P. DeLuca. A novel in vitro release technique for peptide-containing biodegradable microspheres. AAPS PharmSciTech. 11:4 (2000).

    Article  Google Scholar 

  13. M. Boisdron-Celle, P. Menei, and J. P. Benoit. Preparation and characterization of 5-fluorouracil-loaded microparticles as biodegradable anticancer drug carriers. J. Pharm. Pharmacol. 47:108–114 (1995).

    PubMed  CAS  Google Scholar 

  14. N. Faisant, J. Siepmann, and J. P. Benoit. PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. Eur. J. Pharm. Sci. 15:355–366 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. A. Bozkir, and O. M. Saka. Formulation and investigation of 5-FU nanoparticles with factorial design-based studies. Il Farmaco. 60:840–846 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. Y. Zheng, W. Yang, C. Wang, J. Hu, S. Fu, L. Dong, L. Wu, and X. Shen. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. Eur. J. Pharm. Biopharm. 67:621–631 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. L. Liu, P. Jin, M. Cheng, G. Zhang, and F. Zhang. 5-fluorouracil-loaded self-assembled pH-sensitive nanoparticles as novel drug carrier for treatment of malignant tumors. Chin. J. Chem. Eng. 14:377–382 (2006).

    Article  CAS  Google Scholar 

  18. S. Li, A. Wang, W. Jiang, and Z. Guan. Pharmacokinetic characteristics and anticancer effects of 5-fluorouracil loaded nanoparticles. BMC Cancer. 8:103 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. P. A. McCarron, A. D. Woolfson, and S. M. Keating. Sustained release of 5-fluorouracil from polymeric nanoparticles. J. Pharm. Pharmacol. 52:1451–1459 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. A. Lamprecht, H. Yamamoto, H. Takeuchi, and Y. Kawashima. Microsphere design for the colonic delivery of 5-fluorouracil. J. Control. Rel. 90:313–322 (2003).

    Article  CAS  Google Scholar 

  21. K. Santhi, S. A. Dhanaraj, V. Joseph, S. Ponnusankar, and B. Suresh. A study on the preparation and anti-tumor efficacy of bovine serum albumin nanospheres containing 5-fluorouracil. Drug Dev. Ind. Pharm. 28:1171–1179 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. C. Lo, K. Lin, and G. Hsiue. Preparation and characterization of intelligent core-shell nanoparticles based on poly(d,l-lactide)-g-poly(N-isopropyl acrylamide-co-methacrylic acid). J. Control. Rel. 104:477–488 (2005).

    CAS  Google Scholar 

  23. K. Langer, S. Balthasar, V. Vogel, N. Dinauer, H. von Briesen, and D. Schubert. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 257:169–180 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. R. K. Roy. A Primer on the Taguchi Method, Van Nostrand Reinhold, New York, 1990.

    Google Scholar 

Download references

Acknowledgments

We appreciate partial support of this research by the Iranian National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abbas Shojaosadati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maghsoudi, A., Shojaosadati, S.A. & Vasheghani Farahani, E. 5-Fluorouracil-Loaded BSA Nanoparticles: Formulation Optimization and In Vitro Release Study. AAPS PharmSciTech 9, 1092–1096 (2008). https://doi.org/10.1208/s12249-008-9146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9146-5

Key words

Navigation