Skip to main content

Advertisement

Log in

Effect of Charged and Non-ionic Membrane Additives on Physicochemical Properties and Stability of Niosomes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aim of this study was to investigate an influence of different types of membrane additives including negative charge (dicetylphosphate, DCP), positive charge (stearylamine, STR) and non-ionic molecule (cholesteryl poly-24-oxyethylene ether, SC24) on the physicochemical properties of drug-free and drug-loaded niosomes. Salicylic acid having different proportions of ionized and unionized species at different pH was selected as a model drug. The niosomes were composed of 1:1 mole ratio of Span 60: cholesterol as vesicle forming agents. The results show that incorporation of salicylic acid to the niosomes did not affect zeta potential values; however, addition of the membrane additives changed the zeta potential depending on the type of the additives. Transmission electron microscopy revealed that niosomes had unilamellar structure. The particle sizes of all developed niosomes were between 217 to 360 nm. The entrapment efficiency (%E.E.) of all salicylic acid niosomes at pH 3 was higher than that of niosomes at pH 5, indicating that salicylic acid in unionized form was preferably incorporated in niosomes. Furthermore, the positively charged niosomes showed the highest %E.E. of salicylic acid owing to electrostatic attraction between STR and salicylic acid. After 3 months of storage at 4°C, the particle size of the niosomes remained in the nanosize range except for DCP salicylic acid niosomes at pH 3 whose size increased due to an instability of DCP at low pH. In addition, all niosomes showed no leakage of the salicylic acid after 3 months of storage indicating the good stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. J. Baillie, A. T. Florence, L. R. Hume, G. T. Muirhead, and A. Rogerson. The preparation and properties of niosomes-non-ionic surfactant vesicles. J. Pharm. Pharmacol. 37:863–868 (1985).

    PubMed  CAS  Google Scholar 

  2. I. F. Uchegbu, and S. P. Vyas. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 172:33–70 (1998).

    Article  CAS  Google Scholar 

  3. I. F. Uchegbu, J. A. Turton, J. A. Double, and A. T. Florence. Drug distribution and a pulmonary adverse effect of intraperitoneally administered doxorubicin niosomes in the mouse. Biopharm. Drug Dispos. 15:691–707 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. N. Weiner, L. Lieb, S. Niemiec, C. Ramachandran, Z. Hu, and K. Egbaria. Liposomes: a novel topical delivery system for pharmaceutical and cosmetic applications. J. Drug Target. 2:405–410 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. M. J. Choi, and H. I. Maibach. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol. Physiol. 18:209–219 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. Y. Hao, F. Zhao, N. Li, Y. Yang, and K. Li. Studies on a high encapsulation of colchicines by niosome system. Int. J. Pharm. 244:73–80 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. B. Nasseri. Effect of cholesterol and temperature on the elastic properties of niosomal membranes. Int. J. Pharm. 300:95–101 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. G. N. Devaraj, S. R. Parakh, R. Devraj, S. S. Apte, B. R. Rao, and D. Rambhau. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J. Colloid. Interface. Sci. 251:360–365 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. C. Hu, and D. G. Rhodes. Proniosomes: a novel drug carrier preparation. Int. J. Pharm. 185:23–35 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. D. Dimitrijevic, C. Lamandin, I. F. Uchegbu, A. J. Shaw, and A. T. Florence. The effect of monomers and of micellar and vesicular forms of non-ionic surfactants (Solulan C24 and Solulan 16) on Caco-2 cell monolayers. J. Pharm. Pharmacol. 49:611–616 (1997).

    PubMed  CAS  Google Scholar 

  11. P. Arunothayanun, T. Sooksawate, and A. T. Florence. Extrusion of niosomes from capillaries: approaches to a pulsed delivery device. J. Control Release. 60:391–397 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. A. Manosroi, P. Wongtrakul, J. Manosroi, H. Sakai, F. Sugawara, and M. Yuasa. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B: Biointerfaces. 30:129–138 (2003).

    Article  CAS  Google Scholar 

  13. T. Yoshioka, B. Sternberg, and A. T. Florence. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int. J. Pharm. 105:1–6 (1994).

    Article  CAS  Google Scholar 

  14. P. Perugini, I. Genta, F. Pavanetto, B. Conti, S. Scalia, and A. Baruffini. Study on glycolic acid delivery by liposomes and microspheres. Int. J. Pharm. 196:51–61 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. M. Fresta, G. Puglisi, A. M. Panico, S. D. Marco, and G. Mazzone. CDP-choline entrapment and release from multilamellar and reverse-phase evaporation liposomes. Drug Dev. Ind. Pharm. 19:559–585 (1993).

    Article  CAS  Google Scholar 

  16. A. S. Guinedi, N. D. Mortada, S. Mansour, and R. M. Hathout. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int. J. Pharm. 306:71–82 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. T. S. Levchenko, R. Rammohan, A. N. Lukyanov, K. R. Whiteman, and V. P. Torchilin. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int. J. Pharm. 240:95–102 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. S. P. Vyas, and N. Venkatesan. Poly(phthaloyl-L-lysine)-coated multilamellar vesicles for controlled drug delivery: in vitro and in vivo performance evaluation. Pharm. Acta Helv. 74:51–58 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. F. J. Carrion, A. De La Maza, and J. L. Parra. The influence of ionic strength and lipid bilayer charge on the stability of liposomes. J. Colloid Interface Sci. 164:78–87 (1994).

    Article  CAS  Google Scholar 

  20. I. Nooprasit. Influence of lipid composition, liposome charge and pH of hydration medium on the physicochemical properties and stability of amphotericin B liposomes. Master Thesis in Pharmaceutics, Faculty of Pharmacy, Mahidol University; Bangkok, Thailand, 2000.

  21. N. Weiner, F. J. Martin, and M. Riaz. Liposomes as a drug delivery system. Drug Dev. Ind. Pharm. 15:1523–1554 (1989).

    Article  CAS  Google Scholar 

  22. M. Carafa, E. Santucci, and G. Lucania. Lidocaine-loaded non-ionic surfactant vesicles: characterization and in vitro permeation studies. Int. J. Pharm. 231:21–32 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. J. Y. Fang, C. T. Hong, W. T. Chiu, and Y. Y. Wang. Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm. 219:61–72 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. O. H. Alpar, J. B. Bamford, and V. Walters. The in vitro incorporation and release of hydroxocobalamin by liposomes. Int. J. Pharm. 7:349–351 (1981).

    Article  CAS  Google Scholar 

  25. A. Namdeo, and N. K. Jain. Niosomal delivery of 5-fluorouracil. J. Microencapsul. 16:731–740 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. S. Perrett, M. Golding, and W. P. Williams. A simple method for the preparation of liposomes for pharmaceutical applications: characterization of the liposomes. J. Pharm. Pharmacol. 43:154–161 (1991).

    PubMed  CAS  Google Scholar 

  27. D. A. V. Hal, J. A. Bouwstra, A. V. Rensen, E. Jeremiasse, T. D. Vringer, and H. E. Junginger. Preparation and characterization of non-ionic surfactant vesicles. J. Colloid Interface Sci. 178:263–273 (1996).

    Article  Google Scholar 

  28. C. Bernsdorff, A. Wolf, R. Winter, and E. Gratton. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophys. J. 72:1264–1277 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. A. R. Mohammed, N. Weston, A. G. Coombes, M. Fitzgerald, and Y. Perrie. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm. 285:23–34 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. T. Loftsson, H. Fri∂riksdóttir, and T. K. Gu∂mundsdóttir. The effect of water-soluble polymers on aqueous solubility of drugs. Int. J. Pharm. 127:293–296 (1996).

    Article  CAS  Google Scholar 

  31. R. N. Rowland, and J. F. Woodley. The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim. Biophys. Acta. 620:400–409 (1980).

    PubMed  CAS  Google Scholar 

  32. G. Gregoriadis, and C. Davis. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem. Biophys. Res. Commun. 89:1287–1293 (1979).

    Article  PubMed  CAS  Google Scholar 

  33. S. C. Semple, A. Chonn, and P. R. Cullis. Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry. 35:2521–2525 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. D. Papahadjopoulos, K. Jacobson, S. Nir, and T. Isac. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. Biophys. Acta. 311:330–348 (1973).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varaporn Buraphacheep Junyaprasert.

Additional information

All the listed authors have read and approved this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junyaprasert, V.B., Teeranachaideekul, V. & Supaperm, T. Effect of Charged and Non-ionic Membrane Additives on Physicochemical Properties and Stability of Niosomes. AAPS PharmSciTech 9, 851–859 (2008). https://doi.org/10.1208/s12249-008-9121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9121-1

Key words

Navigation