Skip to main content
Log in

Ultrasound Transmission Technique as a Potential Tool for Physical Evaluation of Monolithic Matrix Tablets

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of tablet porosity and particle size fraction of compacted Starch acetate powders, with and without model drug caffeine, on acoustic properties of tablets. The ultrasound velocity was determined from the transmission measurements. Tablets of starch acetate (SA DS 2.7) powder with two particle size fractions of 0–53 and 0–710 μm were compressed with a compaction simulator. Porosities of tablets varied in the range from 12% to 43% for both particle size fractions. Strong associations were found between the ultrasound velocity and physical properties of the tablets such as porosity and particle size fraction. Interestingly, ultrasound velocity was practically insensitive to inclusion of the model drug caffeine with the concentrations used. Based on this study ultrasound transmission method is a potential non-destructive tool for studying structural changes of tablets and other solid dosage forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Varma, A. Kaushal, A. Garg, and S. Garg. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. Am. J. Drug Deliv 2:43–57 (2004)

    Article  CAS  Google Scholar 

  2. J. Siepmann, A. Streubel, and N. Peppas. Understanding and predicting drug delivery from hydrophilic matrix tablets using the “sequential layer” model. Pharm. Res 19:306–314 (2002)

    Article  CAS  Google Scholar 

  3. R. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. Peppas. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm 15:25–35 (1983)

    Article  CAS  Google Scholar 

  4. K. Rao, K. Devi, and P. Buri. Influence of molecular-size and water solubility of the solute on its release from swelling and erosion controlled polymeric matrices. J. Controlled Release 12:133–141 (1990)

    Article  CAS  Google Scholar 

  5. P. Katikaneni, S. Upadrashta, S. Neau, and A. Mitra. Ethylcellulose matrix controlled-release tablets of a water-soluble drug. Int. J. Pharm 123:119–125 (1995)

    Article  CAS  Google Scholar 

  6. van B. Veen, J. Pajander, K. Zuurman et al. The effect of powder blend and tablet structure on drug release mechanisms of hydrophobic starch acetate matrix tablets. Eur. J. Pharm. Biopharm 61:149–157 (2005)

    Article  Google Scholar 

  7. J. Boyd, and J. Varley. The uses of passive measurement of acoustic emissions from chemical engineering processes. Chem. Eng. Sci 56:1749–1767 (2001)

    Article  CAS  Google Scholar 

  8. C. Gustafsson, C. Nystrom, H. Lennholm, M. Bonferoni, and C. Caramella. Characteristics of hydroxypropyl methylcellulose influencing compactibility and prediction of particle and tablet properties by infrared spectroscopy. J. Pharm. Sci 92:494–504 (2003)

    Article  CAS  Google Scholar 

  9. S. Baumgartner, G. Lahajnar, A. Sepe ,and J. Kristl. Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using 1H NMR and MRI methods. Eur. J. Pharm. Biopharm 59:299–306 (2005)

    Article  CAS  Google Scholar 

  10. M. Kojima, and H. Nakagami. Investigation of water mobility and diffusivity in hydrating micronized low-substituted hydroxypropyl cellulose, hydroxypropylmethyl cellulose, and hydroxypropyl cellulose matrix tablets by magnetic resonance imaging (MRI). Chem. Pharm. Bull 50:1621–1624 (2002)

    Article  CAS  Google Scholar 

  11. M. Johns, and L. Gladden. Magnetic resonance studies of dissolving particulate solids. Magn. Reson. Imaging 21:395–396 (2003)

    Article  CAS  Google Scholar 

  12. M. Kidokoro, N. Shah, A. Malick, M. Infeld, and J. McGinity. Properties of tablets containing granulations of ibuprofen and an acrylic copolymer prepared by thermal processes. Pharm. Dev. Technol 6:263–275 (2001)

    Article  CAS  Google Scholar 

  13. X. Fu, M. Dutt, A. Bentham, B. Hancock, R. Cameron, and J. Elliott. Investigation of particle packing in model pharmaceutical powders using X-ray microtomography and discrete element method. Powder Technol 167:134–140 (2006)

    Article  CAS  Google Scholar 

  14. F. Ravenelle, R. Marchessault, A. Legare, and M. Buschmann. Mechanical properties and structure of swollen crosslinked high amylose starch tablets. Carbohydr. Polym 47:259–266 (2002)

    Article  CAS  Google Scholar 

  15. T. DiFeo. Drug product development: a technical review of chemistry, manufacturing, and controls information for the support of pharmaceutical compound licensing activities. Drug Dev. Ind. Pharm 29:939–958 (2003)

    Article  CAS  Google Scholar 

  16. J. Panakkal. Longitudinal ultrasonic velocity as a predictor of Young’s modulus in porous materials. Mater. Eval 55:1367–1371 (1997)

    CAS  Google Scholar 

  17. J. Ketolainen, M. Oksanen, J. Rantala, J. Stor-Pellinen, M. Luukkala, and P. Paronen. Photoacoustic evaluation of elasticity and integrity of pharmaceutical tablets. Int. J. Pharm 125:45–53 (1995)

    Article  CAS  Google Scholar 

  18. K. Alderson, R. Webber, U. Mohammed, E. Murphy, and K. Evans. An experimental study of ultrasonic attenuation in microporous polyethylene. Appl. Acoust 50:23–33 (1997)

    Article  Google Scholar 

  19. M. Hakulinen, J. Day, J. Töyräs H. Weinans, and J. Jurvelin. Ultrasonic characterization of human trabecular bone microstructure. Phys. Med. Biol 51:1633–1648 (2006)

    Article  Google Scholar 

  20. R. Dewhurst, R. He, and Q. Shan. Defect visualization in carbon fiber composite using laser ultrasound. Mater. Eval 51:935–940 (1993)

    CAS  Google Scholar 

  21. D. Jones, and A. Rizkalla. Characterization of experimental composite biomaterials. J. Biomed. Mater. Res 33:89–100 (1996)

    Article  CAS  Google Scholar 

  22. R. Chen, T. Zelesky, N. Ilasi, and S. Sekulic. Simultaneously measuring concentrations of a model drug and a model excipient in solution using ultrasonic spectrometry. J. Pharm. Biomed. Anal 37:239–247 (2005)

    Article  Google Scholar 

  23. A. Moussatov, C. Ayrault, and B. Castagnede. Porous material characterization—ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber. Ultrasonics 39:195–202 (2001)

    Article  CAS  Google Scholar 

  24. D. Johnson, J. Koplik, and R. Dashen. Theory of dynamic permeability and tortuosity in fluid-saturated porous-media. J. Fluid Mech 176:379–402 (1987)

    Article  CAS  Google Scholar 

  25. Y. Champoux, and J. Allard. Dynamic tortuosity and bulk modulus in air-saturated porous-media. J. Appl. Phys 70:1975–1979 (1991)

    Article  Google Scholar 

  26. E. Bossy, F. Padilla, F. Peyrin, and P. Laugier. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography. Phys. Med. Biol 50:5545–5556 (2005)

    Article  Google Scholar 

  27. C. Njeh, D. Hans, J. Li et al. Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos. Int 11:1051–1062 (2000)

    Article  CAS  Google Scholar 

  28. D. Boccaccini, and A. Boccaccini. Dependence of ultrasonic velocity on porosity and pore shape in sintered materials. J. Nondestr. Eval 16:187–192 (1997)

    Article  Google Scholar 

  29. S. Pohja, E. Suihko, M. Vidgren, P. Paronen, and J. Ketolainen. Starch acetate as a tablet matrix for sustained drug release. J. Controlled Release 94:293–302 (2004)

    Article  CAS  Google Scholar 

  30. O. Korhonen, S. Pohja, S. Peltonen, E. Suihko, M. Vidgren, and P. Paronen. Effects of physical properties for starch acetate powders on tableting. AAPS PharmSciTech 3:1–9 (2002)

    Article  Google Scholar 

  31. M. Ragozzino. Analysis of the error in measurement of ultrasound speed in tissue due to waveform deformation by frequency-dependent attenuation. Ultrasonics 19:135–138 (1981)

    Article  CAS  Google Scholar 

  32. P. Nicholson, R. Müller, X. Cheng et al. Quantitative ultrasound and trabecular architecture in the human calcaneus. J. Bone Miner. Res 16:1886–1892 (2001)

    Article  CAS  Google Scholar 

  33. C. Langton, S. Palmer, and R. Porter. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng. Med 13:89–91 (1984)

    Article  CAS  Google Scholar 

  34. J. Hull, C. Langton, S. Barker, and A. Jones. Identification and characterisation of materials by broadband ultrasonic attenuation analysis. J. Mater. Process Technol 56:148–157 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from TEKES (Finnish Funding Agency for Technology and Innovation) COMBIO Program and VARMA project is gratefully acknowledged. This study was also financially and technically supported by the Finnish companies Orion Pharma Oyj, Polymer Corex Ltd. and Visipoint Oy. The authors are grateful to M.Sc. Laura Tomppo for her collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hakulinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakulinen, M.A., Pajander, J., Leskinen, J. et al. Ultrasound Transmission Technique as a Potential Tool for Physical Evaluation of Monolithic Matrix Tablets. AAPS PharmSciTech 9, 267–273 (2008). https://doi.org/10.1208/s12249-007-9010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-007-9010-z

Key words

Navigation