Skip to main content
Log in

Ginsenoside Rg1 Alleviates Sepsis-Induced Acute Lung Injury by Reducing FBXO3 Stability in an m6A-Dependent Manner to Activate PGC-1α/Nrf2 Signaling Pathway

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Background

Sepsis-induced acute lung injury (ALI) is one of the serious life-threatening complications of sepsis and is pathologically associated with mitochondrial dysfunction. Ginsenoside Rg1 has good therapeutic effects on ALI. Herein, the pharmacological effects of Rg1 in sepsis-induced ALI were investigated.

Methods

Sepsis-induced ALI models were established by CLP operation and LPS treatment. HE staining was adopted to analyze lung pathological changes. The expression and secretion of cytokines were measured by RT-qPCR and ELISA. Cell viability and apoptosis were assessed by MTT assay, flow cytometry and TUNEL staining. ROS level and mitochondrial membrane potential (MMP) were analyzed using DHE probe and JC-1 staining, respectively. FBXO3 m6A level was assessed using MeRIP assay. The interactions between FBXO3, YTHDF1, and PGC-1α were analyzed by Co-IP or RIP.

Results

Rg1 administration ameliorated LPS-induced epithelial cell inflammation, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Mechanically, Rg1 reduced PGC-1α ubiquitination modification level by inhibiting FBXO3 expression m6A-YTHDF1 dependently. As expected, Rg1’s mitigative effect on LPS-induced inflammation, apoptosis and mitochondrial dysfunction in lung epithelial cells was abolished by FBXO3 overexpression. Moreover, FBXO3 upregulation eliminated the restoring effect of Rg1 on CLP-induced lung injury in rats.

Conclusion

Rg1 activated PGC-1α/Nrf2 signaling pathway by reducing FBXO3 stability in an m6A-YTHDF1-dependent manner to improve mitochondrial function in lung epithelial cells during sepsis-induced ALI progression.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALI:

Acute lung injury

ARDS:

Acute respiratory distress syndrome

FBXO3:

F-Box Protein 3

PGC:

Peroxisome proliferator-activated receptor-γ coactivator

NRF2:

Nuclear factor erythroid 2-related factor 2

MTT:

3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide

ROS:

Reactive oxygen species

DHE:

Dihydroethidium

ELISA:

Enzyme-linked immunosorbent assay

ATP:

Adenosine triphosphate

IL:

Interleukin

TNF:

Tumor necrosis factor

Co-IP:

Coimmunoprecipitation

MeRIP:

Methylated RNA immunoprecipitation

CLP:

Cecal ligation and puncture

HE:

Hematoxylin-eosin

m6A:

N6-methyladenosine

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

RT-qPCR:

Real-time quantitative polymerase chain reaction

Bcl-2:

B-cell lymphoma-2

CYCS:

Cytochrome C

NDUFC2:

NADH dehydrogenase ubiquinone oxidoreductase subunit C2

YTHDF1:

YTH N6-methyladenosine RNA binding protein 1

References

  1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51.

    Article  CAS  PubMed  Google Scholar 

  2. Hall MJ, Levant S, DeFrances CJ. Trends in inpatient hospital deaths: National Hospital Discharge Survey, 2000–2010. NCHS Data Brief. 2013;118:1–8.

    Google Scholar 

  3. Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol. 2013;93(3):329–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gu WJ, Wan YD, Tie HT, Kan QC, Sun TW. Risk of acute lung injury/acute respiratory distress syndrome in critically ill adult patients with pre-existing diabetes: a meta-analysis. PLoS ONE. 2014;9(2):e90426.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aziz M, Ode Y, Zhou M, Ochani M, Holodick NE, Rothstein TL, et al. B-1a cells protect mice from sepsis-induced acute lung injury. Mol Med. 2018;24(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep. 2011;28(3):467–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zou Y, Tao T, Tian Y, Zhu J, Cao L, Deng X, et al. Ginsenoside Rg1 improves survival in a murine model of polymicrobial sepsis by suppressing the inflammatory response and apoptosis of lymphocytes. J Surg Res. 2013;183(2):760–6.

    Article  CAS  PubMed  Google Scholar 

  8. Huang L, Cai HA, Zhang MS, Liao RY, Huang X, Hu FD. Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis. J Pharmacol Sci. 2021;147(3):271–83.

    Article  CAS  PubMed  Google Scholar 

  9. Luo M, Yan D, Sun Q, Tao J, Xu L, Sun H, et al. Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/NLRP3 pathway. J Cell Biochem. 2020;121(4):2994–3004.

    Article  CAS  PubMed  Google Scholar 

  10. Ji Q, Sun Z, Yang Z, Zhang W, Ren Y, Chen W, et al. Protective effect of ginsenoside Rg1 on LPS-induced apoptosis of lung epithelial cells. Mol Immunol. 2021;136:168–74.

    Article  CAS  PubMed  Google Scholar 

  11. Wang QL, Yang L, Peng Y, Gao M, Yang MS, Xing W, et al. Ginsenoside Rg1 regulates SIRT1 to ameliorate sepsis-induced lung inflammation and injury via inhibiting endoplasmic reticulum stress and inflammation. Mediators Inflamm. 2019;2019:6453296.

    PubMed  PubMed Central  Google Scholar 

  12. Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 2018;27(3):657-66.e5.

    Article  CAS  PubMed  Google Scholar 

  13. Andrieux P, Chevillard C, Cunha-Neto E, Nunes JPS. Mitochondria as a Cellular Hub in Infection and Inflammation. Int J Mol Sci. 2021;22(21):11338.

  14. Supinski GS, Schroder EA, Callahan LA. Mitochondria and critical illness. Chest. 2020;157(2):310–22.

    Article  CAS  PubMed  Google Scholar 

  15. Kong X, Lin D, Lu L, Lin L, Zhang H, Zhang H. Apelin-13-Mediated AMPK ameliorates endothelial barrier dysfunction in acute lung injury mice via improvement of mitochondrial function and autophagy. Int Immunopharmacol. 2021;101(Pt B):108230.

    Article  CAS  PubMed  Google Scholar 

  16. Johri A, Chandra A, Flint BM. PGC-1α, mitochondrial dysfunction, and Huntington’s disease. Free Radic Biol Med. 2013;62:37–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J, Gao W, Zhao Z, Li Y, Yang L, Wei W, et al. Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 axis. Mol Neurobiol. 2022;59(5):2855–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Pan H, Zhang Y, Zheng Z, Xiao W, Hong X, et al. Ginsenoside-Rg1 attenuates sepsis-induced cardiac dysfunction by modulating mitochondrial damage via the P2X7 receptor-mediated Akt/GSK-3β signaling pathway. J Biochem Mol Toxicol. 2022;36(1):e22885.

    Article  CAS  PubMed  Google Scholar 

  19. Qin Q, Lin N, Huang H, Zhang X, Cao X, Wang Y, et al. Ginsenoside Rg1 ameliorates cardiac oxidative stress and inflammation in streptozotocin-induced diabetic rats. Diabetes Metab Syndr Obes. 2019;12:1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao Y, Xiao X, Luo J, Wang J, Peng Q, Zhao J, et al. E3 ubiquitin ligase FBXO3 drives neuroinflammation to aggravate cerebral ischemia/reperfusion injury. Int J Mol Sci. 2022;23(21):13648.

  21. Mallampalli RK, Coon TA, Glasser JR, Wang C, Dunn SR, Weathington NM, et al. Targeting F box protein Fbxo3 to control cytokine-driven inflammation. J Immunol. 2013;191(10):5247–55.

    Article  CAS  PubMed  Google Scholar 

  22. Chen BB, Coon TA, Glasser JR, McVerry BJ, Zhao J, Zhao Y, et al. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation. Nat Immunol. 2013;14(5):470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hung KY, Liao WI, Pao HP, Wu SY, Huang KL, Chu SJ. Targeting F-box protein Fbxo3 attenuates lung injury induced by ischemia-reperfusion in rats. Front Pharmacol. 2019;10:583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qian M, Lou Y, Wang Y, Zhang M, Jiang Q, Mo Y, et al. PICK1 deficiency exacerbates sepsis-associated acute lung injury and impairs glutathione synthesis via reduction of xCT. Free Radic Biol Med. 2018;118:23–34.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng F, Wu X, Zhang J, Fu Z, Zhang Y. Sevoflurane reduces lipopolysaccharide-induced apoptosis and pulmonary fibrosis in the RAW264.7 cells and mice models to ameliorate acute lung injury by eliminating oxidative damages. Redox: Rep Commun Free Radic Res. 2022;27(1):139–49.

    Article  CAS  Google Scholar 

  26. Liang D, Huang A, Jin Y, Lin M, Xia X, Chen X, et al. Protective effects of exogenous NaHS against sepsis-induced myocardial mitochondrial injury by enhancing the PGC-1α/NRF2 pathway and mitochondrial biosynthesis in mice. Am J Transl Res. 2018;10(5):1422–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48(7):3816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 2019;20(21):5376.

  29. Hudson LD, Milberg JA, Anardi D, Maunder RJ. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151(2 Pt 1):293–301.

    Article  CAS  PubMed  Google Scholar 

  30. Iscimen R, Cartin-Ceba R, Yilmaz M, Khan H, Hubmayr RD, Afessa B, et al. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Crit Care Med. 2008;36(5):1518–22.

    Article  PubMed  Google Scholar 

  31. Mu G, Deng Y, Lu Z, Li X, Chen Y. miR-20b suppresses mitochondrial dysfunction-mediated apoptosis to alleviate hyperoxia-induced acute lung injury by directly targeting MFN1 and MFN2. Acta Biochim Biophys Sin (Shanghai). 2021;53(2):220–8.

    Article  CAS  PubMed  Google Scholar 

  32. Yu T, Tang Y, Zhang F, Zhang L. Roles of ginsenosides in sepsis. J Ginseng Res. 2023;47(1):1–8.

    Article  PubMed  Google Scholar 

  33. Guo J, Wang R, Min F. Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells. J Leukoc Biol. 2022;112(5):1065–77.

    Article  CAS  PubMed  Google Scholar 

  34. Xu M, Ma Q, Fan C, Chen X, Zhang H, Tang M. Ginsenosides Rb1 and Rg1 protect primary cultured astrocytes against oxygen-glucose deprivation/reoxygenation-induced injury via improving mitochondrial function. Int J Mol Sci. 2019;20(23):6086.

  35. Qu M, Chen Z, Qiu Z, Nan K, Wang Y, Shi Y, et al. Neutrophil extracellular traps-triggered impaired autophagic flux via METTL3 underlies sepsis-associated acute lung injury. Cell Death Discov. 2022;8(1):375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu C, Yang L, Wang Y, Zhou S, Luo J, Gu Y. Ginsenoside Rh2 reduces m6A RNA methylation in cancer via the KIF26B-SRF positive feedback loop. J Ginseng Res. 2021;45(6):734–43.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Han Z, Wang X, Xu Z, Cao Y, Gong R, Yu Y, et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics. 2021;11(6):3000–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang S, Guan X, Liu W, Zhu Z, Jin H, Zhu Y, et al. YTHDF1 alleviates sepsis by upregulating WWP1 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis. Cell Death Discov. 2022;8(1):244.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD, et al. The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules. 2020;10(2):347.

  40. Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol. 2005;25(4):1354–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen Q, Shao X, He Y, Lu E, Zhu L, Tang W. Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α pathway. Biol Pharm Bull. 2021;44(10):1536–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Clinical Research Center for Geriatric Diseases of Yunnan Province—diagnosis and treatment of geriatric comorbidity and clinical translational research (202102AA310069), Special Fund of Applied Basic Research of Yunnan Science and Technology Department and Kunming Medical University (202101AY07001-019).

Author information

Authors and Affiliations

Authors

Contributions

Rong Liu and Qiang Wang designed this study. Yao Li, Ruixue Wan, Ping Yang, Dexing Yang, Jiefu Tang, and Jiafei Lu collected the materials and performed the experiments. Rong Liu and Qiang Wang analyzed the data and wrote the manuscript. Rong Liu revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Rong Liu.

Ethics declarations

Ethics Approval and Consent to Participate

All experimental procedures were approved by The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rong Liu and Qiang Wang are the co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Wang, Q., Li, Y. et al. Ginsenoside Rg1 Alleviates Sepsis-Induced Acute Lung Injury by Reducing FBXO3 Stability in an m6A-Dependent Manner to Activate PGC-1α/Nrf2 Signaling Pathway. AAPS J 26, 47 (2024). https://doi.org/10.1208/s12248-024-00919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-024-00919-5

Keywords

Navigation