Skip to main content
Log in

Bile Acid–Targeted Hyaluronic Acid Nanoparticles for Enhanced Oral Absorption of Deferoxamine

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Patients with β-thalassemia and sickle cell disease often rely on blood transfusions which can lead to hemochromatosis and chronic oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat hemochromatosis but is suboptimal to patients due to its poor pharmacokinetics which requires long-term infusion regimens. Although the oral route is preferable, DFO has limited oral bioavailability. Studies have shown that hyaluronic acid (HA) and bile acid (BA) can enhance the oral absorption of poorly absorbed drugs. To improve upon the oral delivery of DFO, we report on the synthesis and characterization of HA (MW 15 kD) conjugated to two types of BA, deoxycholic acid (DOCA) and taurocholic acid (TCA), and DFO. The resulting seven polymeric conjugates all formed self-assembled nanoparticles. The degree of BA and DFO conjugation to the HA polymer was confirmed at each step through nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV–Vis spectroscopy. The best formulations for further in vitro testing were determined based on physicochemical characterizations and included HA-DFO, TCA9-HA-DFO, and DOCA9-HA-DFO. Results from in vitro assays revealed that TCA9-HA-DFO enhanced the permeation of DFO the most and was also less cytotoxic to cells compared to the free drug DFO. In addition, ferritin reduction studies indicated that the conjugation of DFO to TCA9-HA did not compromise its chelation efficiency at equivalent free DFO concentrations. This research provides supportive data for the idea that TCA conjugated to HA may enhance the oral absorption of DFO, improve its cytocompatibility, and maintain its iron chelation efficiency.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available upon written request.

References

  1. Wang Y, Liu Z, Lin T-M, Chanana S, Xiong MP. Nanogel-DFO conjugates as a model to investigate pharmacokinetics, biodistribution, and iron chelation in vivo. Int J Pharm. 2018;538(1–2):79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu Z, Qiao J, Nagy T, Xiong MP. ROS-triggered degradable iron-chelating nanogels: safely improving iron elimination in vivo. J Control Release. 2018;283:84–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Royal CD, Babyak M, Shah N, Srivatsa S, Stewart KA, Tanabe P, et al. Sickle cell disease is a global prototype for integrative research and healthcare. Adv Genet. 2021;2(1):e10037.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Farshadpour F, Taherkhani R, Farajzadeh H. Hepatitis B infection among β-thalassemia major patients in Bushehr province of southern Iran. J Immunoassay Immunochem. 2023;44(2):147–61.

    Article  CAS  PubMed  Google Scholar 

  5. ADMINISTRATION USFD: FDA approves first gene therapies to treat patients with sickle cell disease. https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease (2023). Accessed 08 Dec 2023.

  6. Sheridan C. The world’s first CRISPR therapy is approved: who will receive it? Nat Biotechnol. 2024;42(1):3–4.

    Article  CAS  PubMed  Google Scholar 

  7. Vakulskas CA, Behlke MA. Evaluation and reduction of CRISPR off-target cleavage events. Nucleic Acid Ther. 2019;29(4):167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Z, Simchick GA, Qiao J, Ashcraft MM, Cui S, Nagy T, et al. Reactive oxygen species-triggered dissociation of a polyrotaxane-based nanochelator for enhanced clearance of systemic and hepatic iron. ACS Nano. 2020;15(1):419–33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hershko C, Abrahamov A, Konijn A, Breuer W, Cabantchik I, Pootrakul P, et al. Objectives and methods of iron chelation therapy. Bioinorg Chem Appl. 2003;1(2):151–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pawlaczyk M, Schroeder G. Deferoxamine-modified hybrid materials for direct chelation of Fe (III) ions from aqueous solutions and indication of the competitiveness of in vitro complexing toward a biological system. ACS Omega. 2021;6(23):15168–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Salimi A, Zadeh BSM, Kazemi M. Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: in vitro and ex vivo studies. Res Pharm Sci. 2019;14(4):293.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rassu G, Soddu E, Cossu M, Brundu A, Cerri G, Marchetti N, et al. Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J Control Release. 2015;201:68–77.

    Article  CAS  PubMed  Google Scholar 

  13. Poggiali E, Cassinerio E, Zanaboni L, Cappellini MD. An update on iron chelation therapy. Blood Transfus. 2012;10(4):411.

    PubMed  PubMed Central  Google Scholar 

  14. Farr AC, Xiong MP. Challenges and opportunities of deferoxamine delivery for treatment of Alzheimer’s disease, Parkinson’s disease, and intracerebral hemorrhage. Mol Pharm. 2020;18(2):593–609.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Neufeld EJ. Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: new data, new questions. Blood. 2006;107(9):3436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu L, Yang S, Chen F, Cheng K-W. Hyaluronic acid–zein core-shell nanoparticles improve the anticancer effect of curcumin alone or in combination with oxaliplatin against colorectal cancer via CD44-mediated cellular uptake. Molecules. 2022;27(5):1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aguilera-Garrido A, Molina-Bolívar J, Gálvez-Ruiz M, Galisteo-González F. Mucoadhesive properties of liquid lipid nanocapsules enhanced by hyaluronic acid. J Mol Liq. 2019;296:111965.

    Article  CAS  Google Scholar 

  18. Zhang M, Asghar S, Jin X, Hu Z, Ping Q, Chen Z, et al. The enhancing effect of N-acetylcysteine modified hyaluronic acid-octadecylamine micelles on the oral absorption of paclitaxel. Int J Biol Macromol. 2019;138:636–47.

    Article  CAS  PubMed  Google Scholar 

  19. Bhujbal S, Dash AK. Metformin-loaded hyaluronic acid nanostructure for oral delivery. AAPS PharmSciTech. 2018;19:2543–53.

    Article  CAS  PubMed  Google Scholar 

  20. Wu H, Guo T, Nan J, Yang L, Liao G, Park HJ, et al. Hyaluronic-acid-coated chitosan nanoparticles for insulin oral delivery: fabrication, characterization, and hypoglycemic ability. Macromol Biosci. 2022;22(7):2100493.

    Article  CAS  Google Scholar 

  21. Zhao L, Ding J, He P, Xiao C, Tang Z, Zhuang X, et al. An efficient pH sensitive oral insulin delivery system enhanced by deoxycholic acid. J Control Release. 2011;152:e184–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lei C, Liu X-R, Chen Q-B, Li Y, Zhou J-L, Zhou L-Y, et al. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release. 2021;331:416–33.

    Article  CAS  PubMed  Google Scholar 

  23. Tian H, He Z, Sun C, Yang C, Zhao P, Liu L, et al. Uniform core–shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Healthcare Mater. 2018;7(17):1800285.

    Article  Google Scholar 

  24. Yegappan R, Selvaprithiviraj V, Mohandas A, Jayakumar R. Nano polydopamine crosslinked thiol-functionalized hyaluronic acid hydrogel for angiogenic drug delivery. Colloids Surf, B. 2019;177:41–9.

    Article  CAS  Google Scholar 

  25. Zhu J, Tang X, Jia Y, Ho C-T, Huang Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery–a review. Int J Pharm. 2020;578:119127.

    Article  CAS  PubMed  Google Scholar 

  26. Buckley C, Murphy EJ, Montgomery TR, Major I. Hyaluronic acid: a review of the drug delivery capabilities of this naturally occurring polysaccharide. Polymers. 2022;14(17):3442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang S, Meng S, Zhou X, Gao Z, Piao MG. pH-Responsive and mucoadhesive nanoparticles for enhanced oral insulin delivery: the effect of hyaluronic acid with different molecular weights. Pharmaceutics. 2023;15(3):820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang P, Yang C, Liu J, Wang W, Guo S, Li J, et al. Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles. J Mater Chem B. 2014;2(25):4021–33.

    Article  CAS  PubMed  Google Scholar 

  29. Lu Y, Wu L, Lin M, Bao X, Zhong H, Ke P, et al. Double layer spherical nanoparticles with hyaluronic acid coating to enhance oral delivery of exenatide in T2DM rats. Eur J Pharm Biopharm. 2023;191:205–18.

    Article  CAS  PubMed  Google Scholar 

  30. de Souza AB, Chaud MV, Santana MHA. Hyaluronic acid behavior in oral administration and perspectives for nanotechnology-based formulations: a review. Carbohyd Polym. 2019;222:115001.

    Article  Google Scholar 

  31. Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv. 2018;25(1):766–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samstein RM, Perica K, Balderrama F, Look M, Fahmy TM. The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles. Biomaterials. 2008;29(6):703–8.

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Zhang M, Liu C, Zhou S, Zhang W, Wang T, et al. Development of liposome containing sodium deoxycholate to enhance oral bioavailability of itraconazole. Asian J Pharm Sci. 2017;12(2):157–64.

    Article  PubMed  Google Scholar 

  34. Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. Application of bile acids in drug formulation and delivery. Front Life Sci. 2013;7(3–4):112–22.

    Article  Google Scholar 

  35. Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of bile acids signaling and perspective on the signal of ursodeoxycholic acid, the most hydrophilic bile acid, in the heart. Biomolecules. 2018;8(4):159.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roda A, Minutello A, Angellotti M, Fini A. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J Lipid Res. 1990;31(8):1433–43.

    Article  CAS  PubMed  Google Scholar 

  37. Nurunnabi M, Khatun Z, Revuri V, Nafiujjaman M, Cha S, Cho S, et al. Design and strategies for bile acid mediated therapy and imaging. RSC Adv. 2016;6(78):73986–4002.

    Article  CAS  Google Scholar 

  38. Han X, Wang Z, Wang M, Li J, Xu Y, He R, et al. Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration. Drug Deliv. 2016;23(5):1818–29.

    Article  CAS  PubMed  Google Scholar 

  39. Ossipov DA, Piskounova S, Varghese OP, Hilborn J. Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels. Biomacromolecules. 2010;11(9):2247–54.

    Article  CAS  PubMed  Google Scholar 

  40. Li N-N, Fu C-P, Zhang L-M. Using casein and oxidized hyaluronic acid to form biocompatible composite hydrogels for controlled drug release. Mater Sci Eng, C. 2014;36:287–93.

    Article  CAS  Google Scholar 

  41. Ujhelyi Z, Fenyvesi F, Váradi J, Fehér P, Kiss T, Veszelka S, et al. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer. Eur J Pharm Sci. 2012;47(3):564–73.

    Article  CAS  PubMed  Google Scholar 

  42. Hubatsch I, Ragnarsson EG, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2(9):2111–9.

    Article  CAS  PubMed  Google Scholar 

  43. Li J, Huo M, Wang J, Zhou J, Mohammad JM, Zhang Y, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials. 2012;33(7):2310–20.

    Article  CAS  PubMed  Google Scholar 

  44. Dong X, Liu C. Preparation and characterization of self-assembled nanoparticles of hyaluronic acid-deoxycholic acid conjugates. J Nanomater. 2010;2010:1–9.

    Article  Google Scholar 

  45. Wei W-H, Dong X-M, Liu C-G. In vitro investigation of self-assembled nanoparticles based on hyaluronic acid-deoxycholic acid conjugates for controlled release doxorubicin: effect of degree of substitution of deoxycholic acid. Int J Mol Sci. 2015;16(4):7195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee E, Kim YS, Bae SM, Kim SK, Jin S, Chung SW, et al. Polyproline-type helical-structured low-molecular weight heparin (LMWH)-taurocholate conjugate as a new angiogenesis inhibitor. Int J Cancer. 2009;124(12):2755–65.

    Article  CAS  PubMed  Google Scholar 

  47. Lai J-Y. Biofunctionalization of gelatin microcarrier with oxidized hyaluronic acid for corneal keratocyte cultivation. Colloids Surf, B. 2014;122:277–86.

    Article  CAS  Google Scholar 

  48. Cui S, Liu Z, Nagy T, Agboluaje EO, Xiong MP. Oral non-absorbable polymer-deferoxamine conjugates for reducing dietary iron absorption. Mol Pharmaceutics. 2023;20(2):1285–95.

    Article  CAS  Google Scholar 

  49. Han L, Zhao Y, Yin L, Li R, Liang Y, Huang H, et al. Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech. 2012;13:836–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li L, Wang N, Jin X, Deng R, Nie S, Sun L, et al. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials. 2014;35(12):3903–17.

    Article  CAS  PubMed  Google Scholar 

  51. Brittenham GM. Iron-chelating therapy for transfusional iron overload. N Engl J Med. 2011;364(2):146–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bayanzay K, Alzoebie L. Reducing the iron burden and improving survival in transfusion-dependent thalassemia patients: current perspectives. J Blood Med. 2016;7:159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Annaba F, Kumar P, Dudeja AK, Saksena S, Gill RK, Alrefai WA. Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT. Am J Physiol-Gastrointest Liver Physiol. 2010;298(3):G467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yao W, Xu Z, Sun J, Luo J, Wei Y, Zou J. Deoxycholic acid-functionalised nanoparticles for oral delivery of rhein. Eur J Pharm Sci. 2021;159:105713.

    Article  CAS  PubMed  Google Scholar 

  55. Park J, Choi JU, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials. 2017;147:145–54.

    Article  CAS  PubMed  Google Scholar 

  56. Kim SK, Vaishali B, Lee E, Lee S, Lee Y-K, Kumar TS, et al. Oral delivery of chemical conjugates of heparin and deoxycholic acid in aqueous formulation. Thromb Res. 2006;117(4):419–27.

    Article  CAS  PubMed  Google Scholar 

  57. Kim SK, Huh J, Kim SY, Byun Y, Lee DY, Moon HT. Physicochemical conjugation with deoxycholic acid and dimethylsulfoxide for heparin oral delivery. Bioconjug Chem. 2011;22(7):1451–8.

    Article  CAS  PubMed  Google Scholar 

  58. Khatun Z, Nurunnabi M, Cho KJ, Byun Y, Bae YH, Lee Y-K. Oral absorption mechanism and anti-angiogenesis effect of taurocholic acid-linked heparin-docetaxel conjugates. J Control Release. 2014;177:64–73.

    Article  CAS  PubMed  Google Scholar 

  59. Chen Z, Han S, Yang X, Xu L, Qi H, Hao G, Cao J, Liang Y, Ma Q, Zhang G, Sun Y. Overcoming multiple absorption barrier for insulin oral delivery using multifunctional nanoparticles based on chitosan derivatives and hyaluronic acid. Int J Nanomedicine. 2020;15:4877–98.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.A. wrote the initial draft of the manuscript and performed all the experiments. N.G. assisted with the microscopy experiments and image processing analysis. All authors have edited and approved the final version of the manuscript.

Corresponding author

Correspondence to May P. Xiong.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 782 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agboluaje, E.O., Cui, S., Grimsey, N.J. et al. Bile Acid–Targeted Hyaluronic Acid Nanoparticles for Enhanced Oral Absorption of Deferoxamine. AAPS J 26, 46 (2024). https://doi.org/10.1208/s12248-024-00911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-024-00911-z

Keywords

Navigation