Skip to main content

Advertisement

Log in

Targeting Macrophages for Tumor Therapy

  • Review Article
  • Recent Advances in Drug Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Macrophages, as one of the most abundant tumor-infiltrating cells, play an important role in tumor development and metastasis. The frequency and polarization of tumor-associated macrophages (TAMs) correlate with disease progression, tumor metastasis, and resistance to various treatments. Pro-inflammatory M1 macrophages hold the potential to engulf tumor cells. In contrast, anti-inflammatory M2 macrophages, which are predominantly present in tumors, potentiate tumor progression and immune escape. Targeting macrophages to modulate the tumor immune microenvironment can ameliorate the tumor-associated immunosuppression and elicit an anti-tumor immune response. Strategies to repolarize TAMs, deplete TAMs, and block inhibitory signaling hold great potential in tumor therapy. Besides, biomimetic carriers based on macrophages have been extensively explored to prolong circulation, enhance tumor-targeted delivery, and reduce the immunogenicity of therapeutics to augment therapeutic efficacy. Moreover, the genetic engineering of macrophages with chimeric antigen receptor (CAR) allows them to recognize tumor antigens and perform tumor cell-specific phagocytosis. These strategies will expand the toolkit for treating tumors, especially for solid tumors, drug-resistant tumors, and metastatic tumors. Herein, we introduce the role of macrophages in tumor progression, summarize the recent advances in macrophage-centered anticancer therapy, and discuss their challenges as well as future applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Underhill DM, Gordon S, Imhof BA, Nunez G, Bousso P. Elie Metchnikoff (1845-1916): celebrating 100 years of cellular immunology and beyond. Nat Rev Immunol. 2016;16(10):651–6. https://doi.org/10.1038/nri.2016.89.

    Article  CAS  PubMed  Google Scholar 

  2. Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK, et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol. 2015;185(10):2596–606. https://doi.org/10.1016/j.ajpath.2015.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gordon S, Pluddemann A, Martinez EF. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev. 2014;262(1):36–55. https://doi.org/10.1111/imr.12223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–92. https://doi.org/10.1084/jem.176.1.287.

    Article  CAS  PubMed  Google Scholar 

  5. Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32(6):463–88. https://doi.org/10.1615/critrevimmunol.v32.i6.10.

    Article  CAS  PubMed  Google Scholar 

  6. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–73. https://doi.org/10.4049/jimmunol.164.12.6166.

    Article  CAS  PubMed  Google Scholar 

  7. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukocyte Biol. 2009;86(5):1065–73. https://doi.org/10.1189/jlb.0609385.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao C, Pang X, Yang Z, Wang S, Deng H, Chen X. Nanomaterials targeting tumor associated macrophages for cancer immunotherapy. J Control Release. 2022;341:272–84. https://doi.org/10.1016/j.jconrel.2021.11.028.

    Article  CAS  PubMed  Google Scholar 

  9. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2016;99(Pt B):180–5. https://doi.org/10.1016/j.addr.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou XF, Liu XR, Huang L. Macrophage-mediated tumor cell phagocytosis: opportunity for nanomedicine intervention. Adv Funct Mater. 2021;31(5):2006220. https://doi.org/10.1002/adfm.202006220.

    Article  CAS  PubMed  Google Scholar 

  11. Saeed M, Chen F, Ye J, Shi Y, Lammers T, De Geest BG, et al. From design to clinic: engineered nanobiomaterials for immune normalization therapy of cancer. Adv Mater. 2021;33(30):e2008094. https://doi.org/10.1002/adma.202008094.

    Article  CAS  PubMed  Google Scholar 

  12. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23(8):1148–56. https://doi.org/10.1038/s41590-022-01267-2.

    Article  CAS  PubMed  Google Scholar 

  13. Li CX, Xu XF, Wei SH, Jiang P, Xue LX, Wang JJ. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 2021;9(1):e001341. https://doi.org/10.1136/jitc-2020-001341.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang QY, Guo NN, Zhou Y, Chen JJ, Wei QC, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharmacol Sin B. 2020;10(11):2156–70. https://doi.org/10.1016/j.apsb.2020.04.004.

    Article  CAS  Google Scholar 

  15. Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B, et al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating beta-catenin/STAT3 signaling. Cell Death Dis. 2020;11(4):234. https://doi.org/10.1038/s41419-020-2435-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A. 2011;108(30):12425–30. https://doi.org/10.1073/pnas.1106645108.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell. 2012;149(1):36–47. https://doi.org/10.1016/j.cell.2012.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garner JM, Fan MY, Yang CH, Du ZY, Sims M, Davidoff AM, et al. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B signaling in glioblastoma cancer stem cells regulates the notch pathway. J Biolog Chem. 2013;288(36):26167–76. https://doi.org/10.1074/jbc.M113.477950.

    Article  CAS  Google Scholar 

  19. Komohara Y, Horlad H, Ohnishi K, Fujiwara Y, Bai B, Nakagawa T, et al. Importance of direct macrophage - tumor cell interaction on progression of human glioma. Cancer Sci. 2012;103(12):2165–72. https://doi.org/10.1111/cas.12015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin CC, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71. https://doi.org/10.1038/nrc3611.

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Guo J, Huang L. Tackling TAMs for cancer immunotherapy: it's nano time. Trends Pharmacol Sci. 2020;41(10):701–14. https://doi.org/10.1016/j.tips.2020.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev Immunol. 2009;9(3):162–74. https://doi.org/10.1038/nri2506.

    Article  CAS  Google Scholar 

  23. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng YH, Fuhrer T, et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167(3):829–42. https://doi.org/10.1016/j.cell.2016.09.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horlad H, Ma C, Yano H, Pan C, Ohnishi K, Fujiwara Y, et al. An IL-27/Stat3 axis induces expression of programmed cell death 1 ligands (PD-L1/2) on infiltrating macrophages in lymphoma. Cancer Sci. 2016;107(11):1696–704. https://doi.org/10.1111/cas.13065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–37. https://doi.org/10.1084/jem.20082173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Columba-Cabezas S, Serafini B, Ambrosini E, Sanchez M, Penna G, Adorini L, et al. Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol. 2002;130(1-2):10–21. https://doi.org/10.1016/S0165-5728(02)00170-4.

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Yang L, Yue DL, Cao L, Li LF, Wang D, et al. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 2019;452:244–53. https://doi.org/10.1016/j.canlet.2019.03.040.

    Article  CAS  PubMed  Google Scholar 

  28. Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nature Rev Drug Discov. 2022;21(11):799–820. https://doi.org/10.1038/s41573-022-00520-5.

    Article  CAS  Google Scholar 

  29. Kim IS, Gao Y, Welte T, Wang H, Liu J, Janghorban M, et al. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat Cell Biol. 2019;21(9):1113–26. https://doi.org/10.1038/s41556-019-0373-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koh MY, Sayegh N, Agarwal N. Seeing the forest for the trees-single-cell atlases link CD8(+) T cells and macrophages to disease progression and treatment response in kidney cancer. Cancer Cell. 2021;39(5):594–6. https://doi.org/10.1016/j.ccell.2021.03.008.

    Article  CAS  PubMed  Google Scholar 

  31. Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 2021;27(1):152–64. https://doi.org/10.1038/s41591-020-1131-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chow A, Schad S, Green MD, Hellmann MD, Allaj V, Ceglia N, et al. Tim-4(+) cavity-resident macrophages impair anti-tumor CD8(+) T cell immunity. Cancer Cell. 2021;39(7):973–88 e9. https://doi.org/10.1016/j.ccell.2021.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Q, Li YF, Gao WJ, Chen L, Xu WL, Zhu XL. Exosome-mediated crosstalk between tumor and tumor-associated macrophages. Front Mol Biosci. 2021;8:764222. https://doi.org/10.3389/fmolb.2021.764222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaiswal S, Chao MP, Majeti R, Weissman IL. Macrophages as mediators of tumor immunosurveillance. Trends Immunol. 2010;31(6):212–9. https://doi.org/10.1016/j.it.2010.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol. 2021;10(1):60. https://doi.org/10.1186/s40164-021-00252-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 2011;19(4):541–55. https://doi.org/10.1016/j.ccr.2011.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86. https://doi.org/10.1038/nri3789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, et al. The cellular and molecular origin of tumor-associated macrophages. Science. 2014;344(6186):921–5. https://doi.org/10.1126/science.1252510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 2019;79(4):795–806. https://doi.org/10.1158/0008-5472.CAN-18-2545.

    Article  CAS  PubMed  Google Scholar 

  41. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31. https://doi.org/10.1038/nrc2444.

    Article  CAS  PubMed  Google Scholar 

  42. Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011;19(4):512–26. https://doi.org/10.1016/j.ccr.2011.02.005.

    Article  CAS  PubMed  Google Scholar 

  43. Tan YF, Wang M, Zhang Y, Ge SY, Zhong F, Xia GW, et al. Tumor-associated macrophages: a potential target for cancer therapy. Front Oncol. 2021;11:693517. https://doi.org/10.3389/fonc.2021.693517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Uribe-Querol E, Rosales C. Phagocytosis: our current understanding of a universal biological process. Front Immunol. 2020;11:1066. https://doi.org/10.3389/fimmu.2020.01066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16(9):907–17. https://doi.org/10.1038/ni.3253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li H, Somiya M, Kuroda S. Enhancing antibody-dependent cellular phagocytosis by re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes. Biomaterials. 2021;268:120601. https://doi.org/10.1016/j.biomaterials.2020.120601.

    Article  CAS  PubMed  Google Scholar 

  47. Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462. https://doi.org/10.3389/fimmu.2019.01462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. 2020;32(40):e2002054. https://doi.org/10.1002/adma.202002054.

    Article  CAS  PubMed  Google Scholar 

  49. Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11(9):9536–49. https://doi.org/10.1021/acsnano.7b05465.

    Article  CAS  PubMed  Google Scholar 

  50. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25(6):846–59. https://doi.org/10.1016/j.ccr.2014.05.016.

    Article  CAS  PubMed  Google Scholar 

  51. Shen S, Li HJ, Chen KG, Wang YC, Yang XZ, Lian ZX, et al. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 2017;17(6):3822–9. https://doi.org/10.1021/acs.nanolett.7b01193.

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Ding Y, Liu J, Wang J, Mo F, Wang Y, et al. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat Commun. 2022;13(1):1845. https://doi.org/10.1038/s41467-022-29388-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhan X, Jia L, Niu Y, Qi H, Chen X, Zhang Q, et al. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomat. 2014;35(38):10046–57. https://doi.org/10.1016/j.biomaterials.2014.09.007.

    Article  CAS  Google Scholar 

  54. Miselis NR, Wu ZJ, Van Rooijen N, Kane AB. Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther. 2008;7(4):788–99. https://doi.org/10.1158/1535-7163.MCT-07-0579.

    Article  CAS  PubMed  Google Scholar 

  55. Liu XS, Xie XD, Jiang JH, Lin M, Zheng E, Qiu WV, et al. Use of nanoformulation to target macrophages for disease treatment. Adv Funct Mater. 2021;31(38):2104487. https://doi.org/10.1002/adfm.202104487.

    Article  CAS  Google Scholar 

  56. Lepland A, Asciutto EK, Malfanti A, Simon-Gracia L, Sidorenko V, Vicent MJ, et al. Targeting pro-tumoral macrophages in early primary and metastatic breast tumors with the CD206-binding mUNO peptide. Mol Pharm. 2020;17(7):2518–31. https://doi.org/10.1021/acs.molpharmaceut.0c00226.

    Article  CAS  PubMed  Google Scholar 

  57. Zang X, Zhang X, Hu H, Qiao M, Zhao X, Deng Y, et al. Targeted delivery of zoledronate to tumor-associated macrophages for cancer immunotherapy. Mol Pharm. 2019;16(5):2249–58. https://doi.org/10.1021/acs.molpharmaceut.9b00261.

    Article  CAS  PubMed  Google Scholar 

  58. Bonavita E, Galdiero MR, Jaillon S, Mantovani A. Phagocytes as corrupted policemen in cancer-related inflammation. Adv Cancer Res. 2015;128:141–71. https://doi.org/10.1016/bs.acr.2015.04.013.

    Article  CAS  PubMed  Google Scholar 

  59. Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell. 2016;29(4):587–601. https://doi.org/10.1016/j.ccell.2016.03.005.

    Article  CAS  PubMed  Google Scholar 

  60. Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A. Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol. 2004;14(3):155–60. https://doi.org/10.1016/j.semcancer.2003.10.001.

    Article  CAS  PubMed  Google Scholar 

  61. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qian BZ, Li JF, Zhang H, Kitamura T, Zhang JH, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222–5. https://doi.org/10.1038/nature10138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system. Immunity. 2010;32(1):14–27. https://doi.org/10.1016/j.immuni.2010.01.004.

    Article  CAS  PubMed  Google Scholar 

  64. Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 2010;70(12):4840–9. https://doi.org/10.1158/0008-5472.CAN-10-0269.

    Article  CAS  PubMed  Google Scholar 

  65. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. https://doi.org/10.1038/s41408-021-00459-7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15. https://doi.org/10.1016/j.coi.2015.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang C, Zhuang Q, Liu J, Liu X. Synthetic biology in chimeric antigen receptor T (CAR T) cell engineering. ACS Synth Biol. 2022;11(1):1–15. https://doi.org/10.1021/acssynbio.1c00256.

    Article  CAS  PubMed  Google Scholar 

  68. Wang SH, Yang YQ, Ma PW, Zha Y, Zhang J, Lei AH, et al. CAR-macrophage: an extensive immune enhancer to fight cancer. Ebiomedicine. 2022;76:103873. https://doi.org/10.1016/j.ebiom.2022.103873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sloas C, Gill S, Klichinsky M. Engineered CAR-macrophages as adoptive immunotherapies for solid tumors. Frontiers in Immunology. 2021;12:783305. https://doi.org/10.3389/fimmu.2021.783305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, et al. Chimeric antigen receptors that trigger phagocytosis. Elife. 2018;7:e36688. https://doi.org/10.7554/eLife.36688.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang Y, et al. CAR-macrophage: a new immunotherapy candidate against solid tumors. Biomed Pharmacother. 2021;139:111605. https://doi.org/10.1016/j.biopha.2021.111605.

    Article  CAS  PubMed  Google Scholar 

  72. Villanueva MT. Macrophages get a CAR. Nat Rev Immunol. 2020;20(5):273. https://doi.org/10.1038/s41577-020-0302-9.

    Article  CAS  PubMed  Google Scholar 

  73. Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947–53. https://doi.org/10.1038/s41587-020-0462-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reiss KA, Yuan Y, Ueno NT, Johnson ML, Gill S, Dees EC, et al. A phase 1, first-in-human (FIH) study of the anti-HER2 CAR macrophage CT-0508 in subjects with HER2 overexpressing solid tumors. J Clin Oncol. 2022;40(16):2533. https://doi.org/10.1200/JCO.2022.40.16_suppl.2533.

    Article  Google Scholar 

  75. Chen C, Jing W, Chen Y, Wang G, Abdalla M, Gao L, et al. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci Transl Med. 2022;14(656):eabn1128. https://doi.org/10.1126/scitranslmed.abn1128.

    Article  CAS  PubMed  Google Scholar 

  76. Parihar A, Eubank TD, Doseff AI. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun. 2010;2(3):204–15. https://doi.org/10.1159/000296507.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration (Beijing). 2022;2(3):20210166. https://doi.org/10.1002/EXP.20210166.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Shields CWT, Evans MA, Wang LL, Baugh N, Iyer S, Wu D, et al. Cellular backpacks for macrophage immunotherapy. Sci Adv. 2020;6(18):eaaz6579. https://doi.org/10.1126/sciadv.aaz6579.

  79. Gao C, Wang Q, Li J, Kwong CHT, Wei J, Xie B, et al. In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma. Sci Adv. 2022;8(19):eabn1805. https://doi.org/10.1126/sciadv.abn1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cao HQ, Dan ZL, He XY, Zhang ZW, Yu HJ, Yin Q, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. Acs Nano. 2016;10(8):7738–48. https://doi.org/10.1021/acsnano.6b03148.

    Article  CAS  PubMed  Google Scholar 

  81. Shan S, Chen J, Sun Y, Wang Y, Xia B, Tan H, et al. Functionalized macrophage exosomes with panobinostat and PPM1D-siRNA for diffuse intrinsic pontine gliomas therapy. Adv Sci (Weinh). 2022;9(21):e2200353. https://doi.org/10.1002/advs.202200353.

    Article  CAS  PubMed  Google Scholar 

  82. Wu T, Liu Y, Cao Y, Liu Z. Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma. Adv Mater. 2022;34(15):e2110364. https://doi.org/10.1002/adma.202110364.

    Article  CAS  PubMed  Google Scholar 

  83. Gunassekaran GR, Poongkavithai Vadevoo SM, Baek MC, Lee B. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials. 2021;278:121137. https://doi.org/10.1016/j.biomaterials.2021.121137.

    Article  CAS  PubMed  Google Scholar 

  84. Hou X, Zhang X, Zhao W, Zeng C, Deng B, McComb DW, et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat Nanotechnol. 2020;15(1):41–6. https://doi.org/10.1038/s41565-019-0600-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li R, He Y, Zhu Y, Jiang L, Zhang S, Qin J, et al. Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Lett. 2019;19(1):124–34. https://doi.org/10.1021/acs.nanolett.8b03439.

    Article  CAS  PubMed  Google Scholar 

  86. Gao C, Huang Q, Liu C, Kwong CHT, Yue L, Wan JB, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun. 2020;11(1):2622. https://doi.org/10.1038/s41467-020-16439-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jaguin M, Houlbert N, Fardel O, Lecureur V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol. 2013;281(1):51–61. https://doi.org/10.1016/j.cellimm.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  88. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86. https://doi.org/10.1016/j.it.2004.09.015.

    Article  CAS  PubMed  Google Scholar 

  89. Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther. 2021;6(1):127. https://doi.org/10.1038/s41392-021-00506-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22(13):6995. https://doi.org/10.3390/ijms22136995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021;18(3):579–87. https://doi.org/10.1038/s41423-020-00541-3.

    Article  CAS  PubMed  Google Scholar 

  92. Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887–904. https://doi.org/10.1038/nrd.2018.169.

    Article  CAS  PubMed  Google Scholar 

  93. Genard G, Lucas S, Michiels C. Reprogramming of tumor-associated macrophages with anticancer therapies: radiotherapy versus chemo- and immunotherapies. Front Immunol. 2017;8:828. https://doi.org/10.3389/fimmu.2017.00828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24(5):589–602. https://doi.org/10.1016/j.ccr.2013.09.014.

    Article  CAS  PubMed  Google Scholar 

  95. He XY, Liu BY, Wu JL, Ai SL, Zhuo RX, Cheng SX. A dual macrophage targeting nanovector for delivery of oligodeoxynucleotides to overcome cancer-associated immunosuppression. ACS Appl Mater Interfaces. 2017;9(49):42566–76. https://doi.org/10.1021/acsami.7b13594.

    Article  CAS  PubMed  Google Scholar 

  96. Stanczak MA, Rodrigues Mantuano N, Kirchhammer N, Sanin DE, Jacob F, Coelho R, et al. Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Sci Transl Med. 2022;14(669):eabj1270. https://doi.org/10.1126/scitranslmed.abj1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nie W, Wu G, Zhang J, Huang LL, Ding J, Jiang A, et al. Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew Chem Int Ed Engl. 2020;59(5):2018–22. https://doi.org/10.1002/anie.201912524.

    Article  CAS  PubMed  Google Scholar 

  98. Deng G, Sun Z, Li S, Peng X, Li W, Zhou L, et al. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano. 2018;12(12):12096–108. https://doi.org/10.1021/acsnano.8b05292.

    Article  CAS  PubMed  Google Scholar 

  99. Wang Y, Zhao C, Liu Y, Wang C, Jiang H, Hu Y, et al. Recent advances of tumor therapy based on the CD47-SIRPalpha axis. Mol Pharm. 2022;19(5):1273–93. https://doi.org/10.1021/acs.molpharmaceut.2c00073.

    Article  CAS  PubMed  Google Scholar 

  100. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. P Natl Acad Sci USA. 2012;109(17):6662–7. https://doi.org/10.1073/pnas.1121623109.

    Article  Google Scholar 

  101. Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW, Fernhoff NB, et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci U S A. 2013;110(27):11103–8. https://doi.org/10.1073/pnas.1305569110.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kurdi AT, Glavey SV, Bezman NA, Jhatakia A, Guerriero JL, Manier S, et al. Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab. Mol Cancer Ther. 2018;17(7):1454–63. https://doi.org/10.1158/1535-7163.Mct-17-0998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mantovani A, Caprioli V, Gritti P, Spreafico F. Human mature macrophages mediate antibody-dependent cellular cytotoxicity on tumour cells. Transplantation. 1977;24(4):291–3. https://doi.org/10.1097/00007890-197710000-00010.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang WT, Huang QH, Xiao WW, Zhao Y, Pi J, Xu H, et al. Advances in anti-tumor treatments targeting the CD47/SIRP alpha axis. Front Immunol. 2020;11:18. https://doi.org/10.3389/fimmu.2020.00018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bouwstra R, van Meerten T, Bremer E. CD47-SIRP alpha blocking-based immunotherapy: current and prospective therapeutic strategies. Clin Transl Med. 2022;12(8):e943. https://doi.org/10.1002/ctm2.943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Koenig KL, Borate U. New investigational combinations for higher-risk MDS. Hematol-Am Soc Hemat. 2022;1:368–74. https://doi.org/10.1182/hematology.2022000351.

    Article  Google Scholar 

  107. Cabrales P, Carter C, Oronsky B, Reid T. Rrx-001 is a phase 3 small molecule dual inhibitor of CD47 and Sirp alpha with activity in multiple myeloma. Blood. 2018;132:5623. https://doi.org/10.1182/blood-2018-99-116947.

    Article  Google Scholar 

  108. Huang Y, Ma Y, Gao P, Yao Z. Targeting CD47: the achievements and concerns of current studies on cancer immunotherapy. J Thorac Dis. 2017;9(2):E168–E74. https://doi.org/10.21037/jtd.2017.02.30.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 2019;14(1):89–97. https://doi.org/10.1038/s41565-018-0319-4.

    Article  CAS  PubMed  Google Scholar 

  110. Wang F, Huang Q, Su H, Sun M, Wang Z, Chen Z, et al. Self-assembling paclitaxel-mediated stimulation of tumor-associated macrophages for postoperative treatment of glioblastoma. Proc Natl Acad Sci U S A. 2023;120(18):e2204621120. https://doi.org/10.1073/pnas.2204621120.

    Article  CAS  PubMed  Google Scholar 

  111. Kulkarni A, Chandrasekar V, Natarajan SK, Ramesh A, Pandey P, Nirgud J, et al. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat Biomed Eng. 2018;2(8):589–99. https://doi.org/10.1038/s41551-018-0254-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Feng QQ, Ma XT, Cheng KM, Liu GN, Li Y, Yue YL, et al. Engineered bacterial outer membrane vesicles as controllable two-way adaptors to activate macrophage phagocytosis for improved tumor immunotherapy. Adv Mater. 2022;34(40):e2206200. https://doi.org/10.1002/adma.202206200.

    Article  CAS  PubMed  Google Scholar 

  113. Wen J, Wang S, Guo R, Liu D. CSF1R inhibitors are emerging immunotherapeutic drugs for cancer treatment. Eur J Med Chem. 2023;245(Pt 1):114884. https://doi.org/10.1016/j.ejmech.2022.114884.

    Article  CAS  PubMed  Google Scholar 

  114. Mehrotra P, Ravichandran KS. Drugging the efferocytosis process: concepts and opportunities. Nat Rev Drug Discov. 2022;21(8):601–20. https://doi.org/10.1038/s41573-022-00470-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bae SH, Kim JH, Park TH, Lee K, Lee BI, Jang H. BMS794833 inhibits macrophage efferocytosis by directly binding to MERTK and inhibiting its activity. Exp Mol Med. 2022;54(9):1450–60. https://doi.org/10.1038/s12276-022-00840-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhuang WR, Wang Y, Nie W, Lei Y, Liang C, He J, et al. Bacterial outer membrane vesicle based versatile nanosystem boosts the efferocytosis blockade triggered tumor-specific immunity. Nat Commun. 2023;14(1):1675. https://doi.org/10.1038/s41467-023-37369-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Komohara Y, Niino D, Ohnishi K, Ohshima K, Takeya M. Role of tumor-associated macrophages in hematological malignancies. Pathol Int. 2015;65(4):170–6. https://doi.org/10.1111/pin.12259.

    Article  PubMed  Google Scholar 

  118. Saito Y, Komohara Y, Niino D, Horlad H, Ohnishi K, Takeya H, et al. Role of CD204-positive tumor-associated macrophages in adult T-cell leukemia/lymphoMa. J Clin Exp Hematop. 2014;54(1):59–65. https://doi.org/10.3960/jslrt.54.59.

    Article  PubMed  Google Scholar 

  119. Komohara Y, Fujiwara Y, Ohnishi K, Shiraishi D, Takeya M. Contribution of macrophage polarization to metabolic diseases. J Atheroscler Thromb. 2016;23(1):10–7. https://doi.org/10.5551/jat.32359.

    Article  CAS  PubMed  Google Scholar 

  120. Cai H, Zhang Y, Wang J, Gu J. Defects in macrophage reprogramming in cancer therapy: the negative impact of PD-L1/PD-1. Front Immunol. 2021;12:690869. https://doi.org/10.3389/fimmu.2021.690869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Su S, Zhao J, Xing Y, Zhang X, Liu J, Ouyang Q, et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell. 2018;175(2):442–57 e23. https://doi.org/10.1016/j.cell.2018.09.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Q. H. acknowledges the start-up package support from the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Contributions

Writing: Y.W. and A.B.

Funding acquisition: Q.H.

Supervision: Q.H.

Corresponding author

Correspondence to Quanyin Hu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Responsible Editor: Aliasger Salem

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Barrett, A. & Hu, Q. Targeting Macrophages for Tumor Therapy. AAPS J 25, 80 (2023). https://doi.org/10.1208/s12248-023-00845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00845-y

Keywords

Navigation