Skip to main content

Advertisement

Log in

Lipid Nanoparticle-Enabled Intracellular Delivery of Prime Editors

  • Research Article
  • Recent Advances in Drug Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Prime editing is an advanced gene editing platform with potential to correct almost any disease-causing mutation. As genome editors have evolved, their size and complexity have increased, hindering delivery technologies with low-carrying capacity and endosomal escape. We formulated an array of lipid nanoparticles (LNPs) containing prime editors (PEs). We were able to encapsulate PEs in LNPs and confirmed the presence of PE mRNA and two different guide RNAs using HPLC. In addition, we developed a novel reporter cell line for rapid identification of LNPs suited for prime editing. A 54% prime editing rate was observed with enhanced LNPs (eLNPs) containing the cholesterol analog β-sitosterol at optimal ratios of RNA cargoes. eLNPs displayed a polyhedral morphology and a more fluid membrane state that led to improved endosomal escape, eventually causing onset of editing within 9 h and reaching maximum efficiency after 24 h. Hence, PEs delivered using LNPs can propel a new wave of therapies for many additional targets potentially enabling a range of new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PE:

prime editor

PE2:

prime editor and pegRNA

PE3:

prime editor with pegRNA and nsgRNA

pegRNA:

prime editing guideRNA

nsgRNA:

nicking single guideRNA

emGFP:

emerald green fluorescent protein

References

  1. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57. https://doi.org/10.1038/s41586-019-1711-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gupta, A.; Andresen, J. L.; Manan, R. S.; Langer, R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev. 2021, 113834. https://doi.org/10.1016/j.addr.2021.113834.

  3. Hogan MJ, Pardi N. MRNA Vaccines in the COVID-19 Pandemic and beyond. Annu Rev Med. 2022;73(1):17–39. https://doi.org/10.1146/annurev-med-042420-112725.

    Article  CAS  PubMed  Google Scholar 

  4. Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, Gower C, Kall M, Groves N, O’Connell A-M, Simons D, Blomquist PB, Zaidi A, Nash S, Aziz IBA, Thelwall S, Dabrera G, Myers R, Amirthalingam G, et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529). N Engl J Med. 2022;386(16):1532–46. https://doi.org/10.1056/NEJMoa2119451.

    Article  CAS  PubMed  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA–Guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–71. https://doi.org/10.1038/nature24644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R, Villamarin-Salomon R, Rubinstein W, Maglott DR. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862–8. https://doi.org/10.1093/nar/gkv1222.

    Article  CAS  PubMed  Google Scholar 

  8. Bosch JA, Birchak G, Perrimon N. Precise genome engineering in drosophila using prime editing. Proc Natl Acad Sci. 2021;118(1):e2021996118. https://doi.org/10.1073/pnas.2021996118.

    Article  CAS  PubMed  Google Scholar 

  9. Jin S, Lin Q, Luo Y, Zhu Z, Liu G, Li Y, Chen K, Qiu J-L, Gao C. Genome-wide specificity of prime editors in plants. Nat Biotechnol. 2021;39(10):1292–9. https://doi.org/10.1038/s41587-021-00891-x.

    Article  CAS  PubMed  Google Scholar 

  10. Kim DY, Moon SB, Ko J-H, Kim Y-S, Kim D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. 2020;48(18):10576–89. https://doi.org/10.1093/nar/gkaa764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zong Y, Liu Y, Xue C, Li B, Li X, Wang Y, Li J, Liu G, Huang X, Cao X, Gao C. An engineered prime editor with enhanced editing efficiency in plants. Nat Biotechnol. 2022:1–9. https://doi.org/10.1038/s41587-022-01254-w.

  12. Liu Y, Li X, He S, Huang S, Li C, Chen Y, Liu Z, Huang X, Wang X. Efficient generation of mouse models with the prime editing system. Cell Discov. 2020;6(1):1–4. https://doi.org/10.1038/s41421-020-0165-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qian Y, Zhao D, Sui T, Chen M, Liu Z, Liu H, Zhang T, Chen S, Lai L, Li Z. Efficient and precise generation of Tay–Sachs disease model in rabbit by prime editing system. Cell Discov. 2021;7(1):1–3. https://doi.org/10.1038/s41421-021-00276-z.

    Article  CAS  Google Scholar 

  14. Banskota S, Raguram A, Suh S, Du SW, Davis JR, Choi EH, Wang X, Nielsen SC, Newby GA, Randolph PB, Osborn MJ, Musunuru K, Palczewski K, Liu DR. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 2022;185(2):250–265.e16. https://doi.org/10.1016/j.cell.2021.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilson RC, Gilbert LA. The promise and challenge of in vivo delivery for genome therapeutics. ACS Chem Biol. 2018;13(2):376–82. https://doi.org/10.1021/acschembio.7b00680.

    Article  CAS  PubMed  Google Scholar 

  16. Simon DA, Tálas A, Kulcsár PI, Biczók Z, Krausz SL, Várady G, Welker E. PEAR, a flexible fluorescent reporter for the identification and enrichment of successfully prime edited cells. eLife. 2022;11:e69504. https://doi.org/10.7554/eLife.69504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferreira da Silva J, Oliveira GP, Arasa-Verge EA, Kagiou C, Moretton A, Timelthaler G, Jiricny J, Loizou JI. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat Commun. 2022;13(1):760. https://doi.org/10.1038/s41467-022-28442-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schene IF, Joore IP, Oka R, Mokry M, van Vugt AHM, van Boxtel R, van der Doef HPJ, van der Laan LJW, Verstegen MMA, van Hasselt PM, Nieuwenhuis EES, Fuchs SA. Prime editing for functional repair in patient-derived disease models. Nat Commun. 2020;11(1):5352. https://doi.org/10.1038/s41467-020-19136-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li X, Zhou L, Gao B-Q, Li G, Wang X, Wang Y, Wei J, Han W, Wang Z, Li J, Gao R, Zhu J, Xu W, Wu J, Yang B, Sun X, Yang L, Chen J. Highly efficient prime editing by introducing same-sense mutations in PegRNA or stabilizing its structure. Nat Commun. 2022;13(1):1669. https://doi.org/10.1038/s41467-022-29339-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oh Y, Lee W, Hur JK, Song WJ, Lee Y, Kim H, Gwon LW, Kim Y-H, Park Y-H, Kim CH, Lim K-S, Song B-S, Huh J-W, Kim S-U, Jun B-H, Jung C, Lee SH. Expansion of the Prime Editing Modality with Cas9 from Francisella Novicida. Genome Biol. 2022;23(1):92. https://doi.org/10.1186/s13059-022-02644-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu P, Liang S-Q, Zheng C, Mintzer E, Zhao YG, Ponnienselvan K, Mir A, Sontheimer EJ, Gao G, Flotte TR, Wolfe SA, Xue W. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun. 2021;12(1):2121. https://doi.org/10.1038/s41467-021-22295-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jang H, Jo DH, Cho CS, Shin JH, Seo JH, Yu G, Gopalappa R, Kim D, Cho S-R, Kim JH, Kim HH. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat Biomed Eng. 2022;6(2):181–94. https://doi.org/10.1038/s41551-021-00788-9.

    Article  CAS  PubMed  Google Scholar 

  23. Zhi S, Chen Y, Wu G, Wen J, Wu J, Liu Q, Li Y, Kang R, Hu S, Wang J, Liang P, Huang J. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Ther. 2022;30(1):283–94. https://doi.org/10.1016/j.ymthe.2021.07.011.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng C, Liang S-Q, Liu B, Liu P, Kwan S-Y, Wolfe SA, Xue W. A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver. Mol Ther. 2022;30(3):1343–51. https://doi.org/10.1016/j.ymthe.2022.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Q, Liu J, Janssen JM, Tasca F, Mei H, Gonçalves MAFV. Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Res. 2021;49(20):11986–2001. https://doi.org/10.1093/nar/gkab938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rui Y, Wilson DR, Green JJ. Non-viral delivery to enable genome editing. Trends Biotechnol. 2019;37(3):281–93. https://doi.org/10.1016/j.tibtech.2018.08.010.

    Article  CAS  PubMed  Google Scholar 

  27. Kirschman JL, Bhosle S, Vanover D, Blanchard EL, Loomis KH, Zurla C, Murray K, Lam BC, Santangelo PJ. Characterizing exogenous MRNA delivery, trafficking, cytoplasmic release and RNA–protein correlations at the level of single cells. Nucleic Acids Res. 2017;45(12):e113. https://doi.org/10.1093/nar/gkx290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38(7):824–44. https://doi.org/10.1038/s41587-020-0561-9.

    Article  CAS  PubMed  Google Scholar 

  29. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O’Connell D, Walsh KR, Wood K, Phillips J, Xu Y, Amaral A, Boyd AP, Cehelsky JE, McKee MD, Schiermeier A, Harari O, Murphy A, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385(6):493–502. https://doi.org/10.1056/NEJMoa2107454.

    Article  CAS  PubMed  Google Scholar 

  30. Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, Wang K, Iyer S, Dutta C, Clendaniel V, Amaonye M, Beach A, Berth K, Biswas S, Braun MC, Chen H-M, Colace TV, Ganey JD, Gangopadhyay SA, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593(7859):429–34. https://doi.org/10.1038/s41586-021-03534-y.

    Article  CAS  PubMed  Google Scholar 

  31. Ledford H. CRISPR treatment inserted directly into the body for first time. Nature. 2020;579(7798):185–5. https://doi.org/10.1038/d41586-020-00655-8.

    Article  CAS  PubMed  Google Scholar 

  32. Herrera M, Kim J, Eygeris Y, Jozic A, Sahay G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost MRNA delivery. Biomater Sci. 2021;9(12):4289–300. https://doi.org/10.1039/D0BM01947J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA | Nature Communications. https://www.nature.com/articles/s41467-020-14527-2 (accessed 2020-11-08).

  34. Yin H, Song C-Q, Suresh S, Wu Q, Walsh S, Rhym LH, Mintzer E, Bolukbasi MF, Zhu LJ, Kauffman K, Mou H, Oberholzer A, Ding J, Kwan S-Y, Bogorad RL, Zatsepin T, Koteliansky V, Wolfe SA, Xue W, et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol. 2017;35(12):1179–87. https://doi.org/10.1038/nbt.4005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eygeris Y, Patel S, Jozic A, Sahay G. Deconvoluting lipid nanoparticle structure for Messenger RNA delivery. Nano Lett. 2020;20(6):4543–9. https://doi.org/10.1021/acs.nanolett.0c01386.

    Article  CAS  PubMed  Google Scholar 

  36. Leung AKK, Tam YYC, Chen S, Hafez IM, Cullis PR. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J Phys Chem. B. 2015;119(28):8698–706. https://doi.org/10.1021/acs.jpcb.5b02891.

    Article  CAS  PubMed  Google Scholar 

  37. Carrasco MJ, Alishetty S, Alameh M-G, Said H, Wright L, Paige M, Soliman O, Weissman D, Cleveland TE, Grishaev A, Buschmann MD. Ionization and structural properties of MRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun Biol. 2021;4(1):1–15. https://doi.org/10.1038/s42003-021-02441-2.

    Article  CAS  Google Scholar 

  38. Arteta MY, Kjellman T, Bartesaghi S, Wallin S, Wu X, Kvist AJ, Dabkowska A, Székely N, Radulescu A, Bergenholtz J, Lindfors L. Successful reprogramming of cellular protein production through MRNA delivered by functionalized lipid nanoparticles. Proc Natl Acad Sci. 2018;115(15):E3351–60. https://doi.org/10.1073/pnas.1720542115.

    Article  CAS  Google Scholar 

  39. Brader ML, Williams SJ, Banks JM, Hui WH, Zhou ZH, Jin L. Encapsulation state of messenger RNA inside lipid nanoparticles. Biophys J. 2021;120(14):2766–70. https://doi.org/10.1016/j.bpj.2021.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Packer M, Gyawali D, Yerabolu R, Schariter J, White P. A novel mechanism for the loss of MRNA activity in lipid nanoparticle delivery systems. Nat Commun. 2021;12(1):6777. https://doi.org/10.1038/s41467-021-26926-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Targeted Integration of Adeno-Associated Virus (AAV) into human chromosome 19. EMBO J. 1991;10(12):3941–50. https://doi.org/10.1002/j.1460-2075.1991.tb04964.x.

  42. Liu N, Zhou L, Lin G, Hu Y, Jiao Y, Wang Y, Liu J, Yang S, Yao S. HDAC Inhibitors improve CRISPR-Cas9 mediated prime editing and base editing. Mol Ther Nucleic Acids. 2022;29:36–46. https://doi.org/10.1016/j.omtn.2022.05.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev. 2019;144:90–111. https://doi.org/10.1016/j.addr.2019.08.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Du Rietz H, Hedlund H, Wilhelmson S, Nordenfelt P, Wittrup A. Imaging small molecule-induced endosomal escape of SiRNA. Nat Commun. 2020;11(1):1809. https://doi.org/10.1038/s41467-020-15300-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Southern KW, Murphy J, Sinha IP, Nevitt SJ. Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del). Cochrane Database Syst. Rev. 2020;12:CD010966. https://doi.org/10.1002/14651858.CD010966.pub3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Multiscale Microscopy Core (MMC) with technical support from the Oregon Health and Science University (OHSU) and the OHSU Center for Spatial Systems Biomedicine (OCSSB) for assistance with cryoTEM. We thank Michael Henderson for assistance with cell culture for cell screens and Antony Jozic with technical assistance. We would like to thank Anindit Mukherjee for initial help in designing HAP1 reporter with G.S and M.H.B. We acknowledge expert technical assistance by the staff in the Advanced Multiscale Microscopy Shared Resource, supported by the OHSU Knight Cancer Institute (NIH P30 CA069533) and the Office of the Senior Vice President for Research. Equipment purchases included support by the OHSU OCSSB, the MJ Murdock Charitable Trust, and the Collins Foundation.

Funding

This project was supported through funding from the National Heart Lung and Blood Institute (NHLBI) R01HL146736-01 (G.S), SAHAY 19XX0 (G.S) and National Eye Institute (NEI) 1R01EY033423-01A1 (G.S.). This study was also supported by Independent Research Fund Denmark (grant number DFF-9041-00198B to C.F.). We are grateful to the Graduate School of Health and Medical Sciences, University of Copenhagen, for funding the stay of A.L. in G.S.´s lab.

Author information

Authors and Affiliations

Authors

Contributions

G.S. conceived of the idea and directed research. G.S. and C.F. acquired funding. G.S. and M.H-B. designed the experiments. M.H-B., M.G., A.L., K. V performed the research. M.H-B, M.G., A.L. and K.V. contributed to data analysis. M.H-B. and G.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Gaurav Sahay.

Ethics declarations

Conflict of Interest

G.S. is an inventor in patent application US20200129445A1 that details LNP-Sito.

Additional information

Responsible Editor: Aliasger Salem

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1389 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Barrera, M., Gautam, M., Lokras, A. et al. Lipid Nanoparticle-Enabled Intracellular Delivery of Prime Editors. AAPS J 25, 65 (2023). https://doi.org/10.1208/s12248-023-00833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00833-2

Keywords

Navigation