Skip to main content

Advertisement

Log in

Individualized Patient Care Through Model-Informed Precision Dosing: Reflections on Training Future Practitioners

  • Commentary
  • Alternative Perspectives for Evaluating Drug Exposure Characteristics in a Population
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Prior to his passing, Dr. Roger Jelliffe, expressed the need for educating future physicians and clinical pharmacists on the availability of computer-based tools to support dose optimization in patients in stable or unstable physiological states. His perspectives were to be captured in a commentary for the AAPS J with a focus on incorporating population pharmacokinetic (PK)/pharmacodynamic (PD) models that are designed to hit the therapeutic target with maximal precision. Unfortunately, knowing that he would be unable to complete this project, Dr. Jelliffe requested that a manuscript conveying his concerns be completed upon his passing. With this in mind, this final installment of the AAPS J theme issue titled “Alternative Perspectives for Evaluating Drug Exposure Characteristics in a Population — Avoiding Analysis Pitfalls and Pigeonholes” is an effort to honor Dr. Jelliffe’s request, conveying his concerns and the need to incorporate modeling and simulation into the training of physicians and clinical pharmacists. Accordingly, Dr. Jelliffe’s perspectives have been integrated with those of the other three co-authors on the following topics: the clinical utility of population PK models; the role of multiple model (MM) dosage regimens to identify an optimal dose for an individual; tools for determining dosing regimens in renal dialysis patients (or undergoing other therapies that modulate renal clearance); methods to analyze and track drug PK in acutely ill patients presenting with high inter-occasion variability; implementation of a 2-cycle approach to minimize the duration between blood samples taken to estimate the changing PK in an acutely ill patient and for the generation of therapeutic decisions in advance for each dosing cycle based on an analysis of the previous cycle; and the importance of expressing therapeutic drug monitoring results as 1/variance rather than as the coefficient of variation. Examples showcase why, irrespective of the overall approach, the combination of therapeutic drug monitoring and computer-informed precision dosing is indispensable for maximizing the likelihood of achieving the target drug concentrations in the individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamada W, Bartroff J, Bayard D, Burke J, Van Guilder M, Jelliffe R, Leary R, Neely M, Kryschenko A, Schumitzky A. The nonparametric adaptive grid algorithm for population pharmacokinetic modeling. Technical Report TR-2014–1, USC Laboratory of Applied Pharmacokinetics and Bioinformatics, 2013. NPAG_submission_29Oct2013.dvi (lapk.org). Accessed 03/24/22.

  2. Yamada WM, Neely MN, Bartroff J, Bayard DS, Burke JV, Guilder MV, Jelliffe RW, Kryshchenko A, Leary R, Tatarinova T, Schumitzky A. An algorithm for nonparametric estimation of a multivariate mixing distribution with applications to population pharmacokinetics. Pharmaceutics. 2020;13:42. https://doi.org/10.3390/pharmaceutics13010042.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bayard DS, Neely M. Experiment design for nonparametric models based on minimizing Bayes Risk: application to voriconazole1. J Pharmacokinet Pharmacodyn. 2017;44:95–111. https://doi.org/10.1007/s10928-016-9498-5.

    Article  CAS  PubMed  Google Scholar 

  4. Lindsay BG. The geometry of mixture likelihoods: a general theory. Ann Statist. 1983;11:86–94. https://doi.org/10.1214/aos/1176346245.

    Article  Google Scholar 

  5. Mallet A. A maximum likelihood estimation method for random coefficient regression models. Biometrika. 1986;73:645–56. https://doi.org/10.1093/biomet/73.3.645.

    Article  Google Scholar 

  6. Jelliffe R, Schumitzky A, Bayard D, Leary R, Botnen A, Van Guilder M, et al. Human genetic variation, population pharmacokinetic - dynamic models. Bayesian feedback control, and maximally precise individualized drug dosage regimens, CPPM. 2009;7:249–62. https://doi.org/10.2174/187569209790112382.

    Article  CAS  Google Scholar 

  7. Jelliffe R, Bayard D, Milman M, Van Guilder M, Schumitzky A. Achieving target goals most precisely using nonparametric compartmental models and “multiple model” design of dosage regimens. Ther Drug Monit. 2000;22:346–53. https://doi.org/10.1097/00007691-200006000-00018.

    Article  CAS  PubMed  Google Scholar 

  8. Jelliffe R. Goal-oriented, model-based drug regimens: setting individualized goals for each patient. Therap Drug Monit. 2000;22:325–9. https://doi.org/10.1097/00007691-200006000-00016.

    Article  CAS  Google Scholar 

  9. Jelliffe RW, Schumitzky A, Bayard D, Milman M, Van Guilder M, Wang X, Jiang F, Barbaut X, Maire P. Model-based, goal-oriented, individualised drug therapy. Linkage of population modelling, new ‘multiple model’ dosage design, Bayesian feedback and individualised target goals. Clin Pharmacokinet. 1998; 34:57–77.

  10. Mockeliunas L, Keutzer L, Sturkenboom MGG, Bolhuis MS, Hulskotte LMG, Akkerman OW, et al. Model-informed precision dosing of linezolid in patients with drug-resistant tuberculosis. Pharmaceutics. 2022;14:753. https://doi.org/10.3390/pharmaceutics14040753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wicha SG, Märtson AG, Nielsen EI, Koch BCP, Friberg LE, Alffenaar JW, et al. on behalf of International Society of Anti-Infective Pharmacology (ISAP), the PK/PD study group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG). From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther. 2021; 109:928–41. https://doi.org/10.1002/cpt.2202.

  12. Guidi M, Csajka C, Buclin T. Parametric approaches in population pharmacokinetics. J Clin Pharmacol. 2022;62:125–41. https://doi.org/10.1002/jcph.1633.

    Article  CAS  PubMed  Google Scholar 

  13. Goutelle S, Woillard JB, Neely M, Yamada W, Bourguignon L. Nonparametric methods in population pharmacokinetics. J Clin Pharmacol. 2022;62:142–57. https://doi.org/10.1002/jcph.1650.

    Article  CAS  PubMed  Google Scholar 

  14. Kluwe F, Michelet R, Mueller-Schoell A, Maier C, Klopp-Schulze L, van Dyk M, et al. Perspectives on model-informed precision dosing in the digital health era: challenges, opportunities, and recommendations. Clin Pharmacol Ther. 2021;109:29–36. https://doi.org/10.1002/cpt.2049.

    Article  PubMed  Google Scholar 

  15. Goutelle S, Woillard JB, Buclin T, Bourguignon L, Yamada W, Csajka C, et al. Parametric and nonparametric methods in population pharmacokinetics: experts’ discussion on use, strengths, and limitations. J Clin Pharmacol. 2022;62:158–70. https://doi.org/10.1002/jcph.1993.

    Article  CAS  PubMed  Google Scholar 

  16. Holford N, Ma G, Metz D. TDM is dead. Long live TCI! Br J Clin Pharmacol. 2022; 88:1406–13. https://doi.org/10.1111/bcp.14434.

  17. Bustad A, Terziivanov D, Leary R, Port R, Schumitzky A, Jelliffe R. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies. Clin Pharmacokinet. 2006;45:365–83. https://doi.org/10.2165/00003088-200645040-00003.

    Article  PubMed  Google Scholar 

  18. Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW. Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R. Ther Drug Monit. 2012;34:467–76. https://doi.org/10.1097/FTD.0b013e31825c4ba6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prémaud A, Weber LT, Tönshoff B, Armstrong VW, Oellerich M, Urien S, et al. Population pharmacokinetics of mycophenolic acid in pediatric renal transplant patients using parametric and nonparametric approaches. Pharmacol Res. 2011;63:216–24. https://doi.org/10.1016/j.phrs.2010.10.017.

    Article  CAS  PubMed  Google Scholar 

  20. Wang P, Xie H, Zhang Q, Tian X, Feng Y, Qin Z, et al. Population pharmacokinetics of mycophenolic acid in renal transplant patients: a comparison of the early and stable posttransplant stages. Front Pharmacol. 2022;13: 859351. https://doi.org/10.3389/fphar.2022.859351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lawson R, Staatz CE, Fraser CJ, Ramachandran S, Teague L, Mitchell R, et al. Population pharmacokinetic model for once daily intravenous busulfan in paediatric subjects describing time-associated clearance. CPT Pharmacometrics Syst Pharmacol. 2022;11:1002–17. https://doi.org/10.1002/psp4.12809.

  22. Heitzmann J, Thoma Y, Bricca R, Gagnieu MC, Leclerc V, Roux S, Conrad A, Ferry T, Goutelle S. Implementation and comparison of two pharmacometric tools for model-based therapeutic drug monitoring and precision dosing of daptomycin. Pharmaceutics. 2022;14(1):114. https://doi.org/10.3390/pharmaceutics14010114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lereclus A, Korchia T, Riff C, Dayan F, Blin O, Benito S, et al. Towards precision dosing of clozapine in schizophrenia: external evaluation of population pharmacokinetic models and Bayesian forecasting. Ther Drug Monit. 2022;44:674–82. https://doi.org/10.1097/FTD.0000000000000987.

  24. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43:1823–37. https://doi.org/10.1124/dmd.115.065920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abouir K, Samer CF, Gloor Y, Desmeules JA, Daali Y. Reviewing data integrated for PBPK model development to predict metabolic drug-drug interactions: shifting perspectives and emerging trends. Front Pharmacol. 2021;12: 708299. https://doi.org/10.3389/fphar.2021.708299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Polasek TM, Tucker GT, Sorich MJ, Wiese MD, Mohan T, Rostami-Hodjegan A, et al. Prediction of olanzapine exposure in individual patients using physiologically based pharmacokinetic modelling and simulation. Br J Clin Pharmacol. 2018;84:462–76. https://doi.org/10.1111/bcp.13480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm. 1993;21:735–50. https://doi.org/10.1007/BF01113502.

    Article  CAS  PubMed  Google Scholar 

  28. Abrantes JA, Jönsson S, Karlsson MO, Nielsen EI. Handling interoccasion variability in model-based dose individualization using therapeutic drug monitoring data. Br J Clin Pharmacol. 2019;85:1326–36. https://doi.org/10.1111/bcp.13901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li XR, Bar-Shalom Y. Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Trans Control Syst Technol. 1993;1:186–94. https://doi.org/10.1109/87.251886.

    Article  Google Scholar 

  30. Jan SS, Kao YC. Radar tracking with an interacting multiple model and probabilistic data association filter for civil aviation applications. Sensors (Basel). 2013;13:6636–50. https://doi.org/10.3390/s130506636.

    Article  PubMed  Google Scholar 

  31. Bayard DS, Jelliffe RW. A Bayesian approach to tracking patients having changing pharmacokinetic parameters. J Pharmacokinet Pharmacodyn. 2004;31:75–107. https://doi.org/10.1023/b:jopa.0000029490.76908.0c.

    Article  PubMed  Google Scholar 

  32. Jelliffe R, Neely M, Bayard D., Chapter 7 - Pharmacokinetic methods for TDM data analysis and optimal individualization of drug dosage regimens. In: Hempel G (ed). Handbook of Analytical Separations, Elsevier Science B.V., Volume 7, 2020, p. 135–68. https://doi.org/10.1016/B978-0-444-64066-6.00007-1.

  33. The USC BestDose clinical software is available free on request for evaluation and use at http://www.lapk.org/bestdose.php Accessed 08/28/2022.

  34. Macdonald I, Staatz CE, Jelliffe RW, Thomson AH. Evaluation and comparison of simple multiple model, richer data multiple model, and sequential interacting multiple model (IMM) Bayesian analyses of gentamicin and vancomycin data collected from patients undergoing cardiothoracic surgery. Ther Drug Monit. 2008;30:67–74. https://doi.org/10.1097/FTD.0b013e318161a38c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cockroft D, Gault H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:33–41.

    Google Scholar 

  36. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D, for the Modification of Diet in renal Disease Study group. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999; 130:461–70. https://doi.org/10.7326/0003-4819-130-6-199903160-00002.

  37. Jelliffe R. Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen. Am J Nephrol. 2002;22:320–4. https://doi.org/10.1159/000065221.

    Article  PubMed  Google Scholar 

  38. Jelliffe R. Optimizing individualized drug therapy in the ICU. In: Jelliffe R, and Neely M: Individualized drug therapy for patients: basic foundations, relevant software, and clinical applications. Academic Press, Elsevier, 2017, p. 103–114.

  39. Chen S. Kinetic glomerular filtration rate in routine clinical practice-applications and possibilities. Adv Chronic Kidney Dis. 2018;25:105–14. https://doi.org/10.1053/j.ackd.2017.10.013.

    Article  PubMed  Google Scholar 

  40. Schön K, Koristkova B, Kacirova I, Brozmanova H, Grundmann M. Comparison of Mw\Pharm 3.30 and Mw\Pharm ++, a Windows version of pharmacokinetic software for PK/PD monitoring of vancomycin. Part 1: a-posteriori modelling. Comput Methods Programs Biomed. 2022; 214:106552. https://doi.org/10.1016/j.cmpb.2021.106552.

  41. Tan SPF, Scotcher D, Rostami-Hodjegan A, Galetin A. Effect of chronic kidney disease on the renal secretion via organic anion transporters (OAT)1/3: implications for PBPK modelling and dose adjustment. Clin Pharmacol Ther. 2022;112:643–52. https://doi.org/10.1002/cpt.2642.

  42. Blackmore L, Rajamanoharan S, Williams BC. Active estimation for Jump Markov linear systems. IEEE Trans Automatic Control. 2008;53:2223–36. https://doi.org/10.1109/TAC.2008.2006100.

    Article  Google Scholar 

  43. Wills KH, Behan SJ, Nance MJ, Dawson JL, Polasek TM, Hopkins AM, et al. A. Combining therapeutic drug monitoring and pharmacokinetic modelling deconvolutes physiological and environmental sources of variability in clozapine exposure. Pharmaceutics. 2021; 14:47. https://doi.org/10.3390/pharmaceutics14010047.

  44. Gibiansky E, Gibiansky L, Carlile DJ, Jamois C, Buchheit V, Frey N. Population pharmacokinetics of obinutuzumab (GA101) in chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphoma and exposure-response in CLL. CPT Pharmacometrics Syst Pharmacol. 2014;3: e144. https://doi.org/10.1038/psp.2014.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li H, Sun Y, Yu J, Liu C, Liu J, Wang Y. Semimechanistically based modeling of pembrolizumab time-varying clearance using 4 longitudinal covariates in patients with non-small cell lung cancer. J Pharm Sci. 2019;108:692–700. https://doi.org/10.1016/j.xphs.2018.10.064.

    Article  CAS  PubMed  Google Scholar 

  46. Petitcollin A, Bensalem A, Verdier MC, Tron C, Lemaitre F, Paintaud G, et al. Modelling of the time-varying pharmacokinetics of therapeutic monoclonal antibodies: a literature review. Clin Pharmacokinet. 2020;59:37–49. https://doi.org/10.1007/s40262-019-00816-7.

    Article  PubMed  Google Scholar 

  47. Papamichael K, Vogelzang EH, Lambert J, Wolbink G, Cheifetz AS. Therapeutic drug monitoring with biologic agents in immune mediated inflammatory diseases. Expert Rev Clin Immunol. 2019;15:837–48. https://doi.org/10.1080/1744666X.2019.1630273.

    Article  CAS  PubMed  Google Scholar 

  48. Brandse JF, van den Brink GR, Wildenberg ME, van der Kleij D, Rispens T, Jansen JM, et al. Loss of infliximab into feces is associated with lack of response to therapy in patients with severe ulcerative colitis. Gastroenterology. 2015;149:350-5.e2. https://doi.org/10.1053/j.gastro.2015.04.016.

    Article  CAS  PubMed  Google Scholar 

  49. Syversen SW, Goll GL, Jørgensen KK, Sandanger Ø, Sexton J, Olsen IC, et al. Effect of therapeutic drug monitoring vs standard therapy during infliximab induction on disease remission in patients with chronic immune-mediated inflammatory diseases: a randomized clinical trial. JAMA. 2021;325:1744–54. https://doi.org/10.1001/jama.2021.4172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheifetz AS, Abreu MT, Afif W, Cross RK, Dubinsky MC, Loftus EV Jr, et al. A comprehensive literature review and expert consensus statement on therapeutic drug monitoring of biologics in inflammatory bowel disease. Am J Gastroenterol. 2021;116:2014–25. https://doi.org/10.14309/ajg.0000000000001396.

  51. Krieckaert CL, van Tubergen A, Gehin JE, Hernández-Breijo B, Le Mélédo G, Balsa A, et al. EULAR points to consider for therapeutic drug monitoring of biopharmaceuticals in inflammatory rheumatic and musculoskeletal diseases. Ann Rheum Dis. 2022 May 12:annrheumdis-2022–222155. https://doi.org/10.1136/annrheumdis-2022-222155.

  52. Jelliffe RW, Schumitzky A, Bayard D, Fu X, Neely M. Describing assay precision-reciprocal of variance is correct, not CV percent: its use should significantly improve laboratory performance. Ther Drug Monit. 2015;37:389–94. https://doi.org/10.1097/FTD.0000000000000168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karvaly GB, Vincze I, Karádi I, Vásárhelyi B, Zsáry A. Sensitive, high-throughput liquid chromatography-tandem mass spectrometry analysis of atorvastatin and its pharmacologically active metabolites in serum for supporting precision pharmacotherapy. Molecules. 2021;26:1324. https://doi.org/10.3390/molecules26051324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28:481–504. https://doi.org/10.1023/a:1012299115260.Erratum.In:JPharmacokinetPharmacodyn2002;29:309.

    Article  CAS  PubMed  Google Scholar 

  55. Cusumano JA, Klinker KP, Huttner A, Luther MK, Roberts JA, LaPlante KL. Towards precision medicine: therapeutic drug monitoring-guided dosing of vancomycin and β-lactam antibiotics to maximize effectiveness and minimize toxicity. Am J Health Syst Pharm. 2020;77:1104–12. https://doi.org/10.1093/ajhp/zxaa128.

    Article  PubMed  Google Scholar 

  56. Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny JL, Marsousi N, D, et al. Why has model-informed precision dosing not yet become common clinical reality? lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101:646–56. https://doi.org/10.1002/cpt.659.

  57. Kantasiripitak W, Van Daele R, Gijsen M, Ferrante M, Spriet I, Dreesen E. Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol. 2020;11:620. https://doi.org/10.3389/fphar.2020.00620.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Frymoyer A, Schwenk HT, Zorn Y, Bio L, Moss JD, Chasmawala B, et al. Model-informed precision dosing of vancomycin in hospitalized children: implementation and adoption at an academic children’s hospital. Front Pharmacol. 2020;11:551. https://doi.org/10.3389/fphar.2020.00551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. https://www.prnewswire.com/news-releases/insightrx-and-childrens-hospital-los-angeles-chla-to-partner-on-precision-dosing-300810186.html Accessed 08/28/2022

  60. Maxfield K, Milligan L, Wang L, Gonzalez D, Johnson-Williams B, Liu Q, et al. Proceedings of a workshop: precision dosing: defining the need and approaches to deliver individualized drug dosing in the real-world setting. Clin Pharmacol Ther. 2021;109:25–8. https://doi.org/10.1002/cpt.1933.

    Article  PubMed  Google Scholar 

  61. Powell JR, Cook J, Wang Y, Peck R, Weiner D. Drug dosing recommendations for all patients: a roadmap for change. Clin Pharmacol Ther. 2021;109:65–72. https://doi.org/10.1002/cpt.1923.

    Article  PubMed  Google Scholar 

Download references

Funding

Dr. Jelliffe’s work was supported over many years in part by National Institutes of Health RO1 grants GM068968, HD070886, EB005803, GM65619, LM05401, RR11526, and by the Stella Slutsky Kunin Fund. He also expressed gratitude for the evaluations by Dr. Alan Tartakoff, Dr. Ellen Rothchild, and others.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Martinez was responsible for conveying the many discussions with Dr. Jelliffe on the topics covered in this review and was primarily responsible for the developing the contents of this manuscript. Dr. Liu was responsible for providing his pharmacometrics insights and expertise during the manuscript development. Dr. Drusano was responsible for providing his insights, experience, and expertise in the use of pharmacometric tools as a component of patient care and his experience as a university professor responsible for the medical student education on the use of PK as a component of dosage recommendation.

Corresponding author

Correspondence to Marilyn N. Martinez.

Ethics declarations

Conflict of Interest

Drs. Martinez and Lu are employed by the US FDA and has no conflicts of interest to report. Dr. Drusano has no conflicts to report.

Disclaimer

The content of this article has not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency endorsement, determination, or policy. As such, this communication reflects the opinion of the authors and does not reflect views or policy of the FDA. The mention of commercial products, their sources, or their use should not be construed as either an actual or implied endorsement of such products by the FDA.

Additional information

Communicated by Marilyn N. Martinez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelliffe, R., Liu, J., Drusano, G.L. et al. Individualized Patient Care Through Model-Informed Precision Dosing: Reflections on Training Future Practitioners. AAPS J 24, 117 (2022). https://doi.org/10.1208/s12248-022-00769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00769-z

Keywords

Navigation