Skip to main content

Advertisement

Log in

A Critical Overview of the Biological Effects of Excipients (Part II): Scientific Considerations and Tools for Oral Product Development

  • Review Article
  • Theme: The Biological Effect of Pharmaceutical Excipients
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

It is now recognized that a number of excipients previously considered to be “inert” have the capacity to alter drug oral bioavailability through a range of in vivo effects. The various mechanisms through which an excipient can affect in vivo gastrointestinal physiology and drug absorption characteristics were explored in “A Critical Overview of The Biological Effects of Excipients (Part I): Impact on Gastrointestinal Absorption.” The next critical issue that needs to be discussed is how these biological effects are evaluated. Therefore, in Part 2 of this critical overview, the in vitro, in vivo, and in silico methods for evaluating excipient effects are considered. Examples are provided to illustrate how such studies employing these various procedures have been used to promote formulation understanding and optimization. Finally, a discussion of how the Center for Drug Evaluation and Research applies these tools to support biowaivers is provided.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98:2549–72.

    Article  CAS  PubMed  Google Scholar 

  2. Ricarte RG, Van Zee NJ, Li Z, Johnson LM, Lodge TP, Hillmyer MA. Recent advances in understanding the micro- and nanoscale phenomena of amorphous solid dispersions. Mol Pharm American Chemical Society. 2019;16:4089–103.

    Article  CAS  Google Scholar 

  3. Thakral NK, Meister E, Jankovsky C, Li L, Schwabe R, Luo L, et al. Prediction of in vivo supersaturation and precipitation of poorly water-soluble drugs: achievements and aspirations. Int J Pharm. 2021;600: 120505.

    Article  CAS  PubMed  Google Scholar 

  4. Ashwathy P, Anto AT, Sudheesh MS. A mechanistic review on the dissolution phase behavior and supersaturation stabilization of amorphous solid dispersions. Drug Dev Ind Pharm. Taylor & Francis; 2021;47:1–11.

  5. Wilson VR, Mugheirbi NA, Mosquera-Giraldo LI, Deac A, Moseson DE, Smith DT, et al. Interaction of polymers with enzalutamide nanodroplets—impact on droplet properties and induction times. Mol Pharm American Chemical Society. 2021;18:836–49.

    Article  CAS  Google Scholar 

  6. Ueda K, Hate SS, Taylor LS. Impact of hypromellose acetate succinate grade on drug amorphous solubility and in vitro membrane transport. J Pharm Sci. 2020;109:2464–73.

    Article  CAS  PubMed  Google Scholar 

  7. Ueda K, Moseson DE, Pathak V, Taylor LS. Effect of polymer species on maximum aqueous phase supersaturation revealed by quantitative nuclear magnetic resonance spectroscopy. Mol Pharm American Chemical Society. 2021;18:1344–55.

    Article  CAS  Google Scholar 

  8. Price DJ, Ditzinger F, Koehl NJ, Jankovic S, Tsakiridou G, Nair A, et al. Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations - a PEARRL review. J Pharm Pharmacol. 2019;71:483–509.

    Article  CAS  PubMed  Google Scholar 

  9. Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, et al. 50years of oral lipid-based formulations: provenance, progress and future perspectives. Adv Drug Deliv Rev. 2016;101:167–94.

    Article  CAS  PubMed  Google Scholar 

  10. Stewart A, Yates I, Mudie D, Pivette P, Goodwin A, Sarmiento A, et al. Mechanistic study of belinostat oral absorption from spray-dried dispersions. J Pharm Sci. 2019;108:326–36.

    Article  CAS  PubMed  Google Scholar 

  11. Saboo S, Kestur US, Flaherty DP, Taylor LS. Congruent release of drug and polymer from amorphous solid dispersions: insights into the role of drug-polymer hydrogen bonding, surface crystallization, and glass transition. Mol Pharm. 2020;17:1261–75.

    Article  CAS  PubMed  Google Scholar 

  12. Harmon P, Galipeau K, Xu W, Brown C, Wuelfing WP. Mechanism of dissolution-induced nanoparticle formation from a copovidone-based amorphous solid dispersion. Mol Pharm. 2016;13:1467–81.

    Article  CAS  PubMed  Google Scholar 

  13. Kesisoglou F, Wang M, Galipeau K, Harmon P, Okoh G, Xu W. Effect of amorphous nanoparticle size on bioavailability of anacetrapib in dogs. J Pharm Sci. 2019;108:2917–25.

    Article  CAS  PubMed  Google Scholar 

  14. Pollard J, Rajabi-Siahboomi A, Badhan RKS, Mohammed AR, Perrie Y. High-throughput screening of excipients with a biological effect: a kinetic study on the effects of surfactants on efflux-mediated transport. J Pharm Pharmacol. 2019;71:889–97.

    Article  CAS  PubMed  Google Scholar 

  15. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/213051Orig1s000PharmR.pdf. Accessed 23rd June 2021.

  16. Lewis AL, Mcentee N, Holland J, Patel A. Development and approval of rybelsus (oral semaglutide): ushering in a new era in peptide delivery. Drug Deliv Transl Res. 2021;

  17. Ohtsu Y, Gibbons JA, Suzuki K, Fitzsimmons ME, Nozawa K, Arai H. Absorption, distribution, metabolism, and excretion of the androgen receptor inhibitor enzalutamide in rats and dogs. Eur J Drug Metab Pharmacokinet. 2017;42:611–26.

    Article  CAS  PubMed  Google Scholar 

  18. Kádár S, Tőzsér P, Nagy B, Farkas A, Nagy, K. Z, Tsinman O, et al. Flux-based formulation development—a proof of concept study. AAPS J. 2022;24.

  19. Bajaj R, Chong LB, Zou L, Tsakalozou E, Ni Z, Giacomini KM, et al. Interaction Of commonly used oral molecular excipients with P-glycoprotein. AAPS J. 2021;23:106.

    Article  CAS  PubMed  Google Scholar 

  20. Metry M, Polli JE. Evaluation of excipient risk in BCS class I and III biowaivers. AAPS J. 2022;24:1–11.

    Article  Google Scholar 

  21. Yang Y, Zhao Y, Yu A, Sun D, Yu LX. Chapter 12: oral drug absorption: evaluation and prediction. Dev Solid Oral Dos Forms Pharm Theory Pract Second Ed. 2017. p. 331–54.

  22. Cummins CL, Salphati L, Reid MJ, Benet LZ. In vivo modulation of intestinal CYP3A metabolism by P-glycoprotein: studies using the rat single-pass intestinal perfusion model. J Pharmacol Exp Ther. 2003;305:306–14.

    Article  CAS  PubMed  Google Scholar 

  23. Grass M. Selecting in vitro dissolution tests for bioavailability enhancing oral formulations. American Pharmaceutical Review, October 15, 2017.

  24. Mudie DM, Samiei N, Marshall DJ, Amidon GE, Bergström CAS. Selection of in vivo predictive dissolution media using drug substance and physiological properties. Aaps j. 2020;22:34.

    Article  CAS  PubMed  Google Scholar 

  25. O’Dwyer PJ, Box KJ, Dressman J, Griffin BT, Henze LJ, Litou C, et al. Oral biopharmaceutics tools: recent progress from partnership through the Pharmaceutical Education and Research with Regulatory Links collaboration. J Pharm Pharmacol. 2021;73:437–46.

    Article  PubMed  Google Scholar 

  26. Grignard E, Taylor R, McAllister M, Box K, Fotaki N. Considerations for the development of in vitro dissolution tests to reduce or replace preclinical oral absorption studies. Eur J Pharm Sci. 2017;99:193–201.

    Article  CAS  PubMed  Google Scholar 

  27. Gadgil P, Alleyne C, Feng KI, Hu M, Gindy M, Buevich AV, et al. Assessing the utility of in vitro screening tools for predicting bio-performance of oral peptide delivery. Pharm Res. 2019;36:151.

    Article  PubMed  CAS  Google Scholar 

  28. Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: a systematic review. J Control Release. 2021;335:247–68.

    Article  CAS  PubMed  Google Scholar 

  29. Hubatsch I, Ragnarsson EGE, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2:2111–9.

    Article  CAS  PubMed  Google Scholar 

  30. Twarog C, Liu K, O’Brien PJ, Dawson KA, Fattal E, Illel B, et al. A head-to-head Caco-2 assay comparison of the mechanisms of action of the intestinal permeation enhancers: SNAC and sodium caprate (C 10). Eur J Pharm Biopharm. 2020;152:95–107.

    Article  CAS  PubMed  Google Scholar 

  31. Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256–76.

    Article  CAS  PubMed  Google Scholar 

  32. Maher S, Heade J, McCartney F, Waters S, Bleiel SB, Brayden DJ. Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae. Int J Pharm. 2018;539:11–22.

    Article  CAS  PubMed  Google Scholar 

  33. McCartney F, Rosa M, Brayden DJ. Evaluation of sucrose laurate as an intestinal permeation enhancer for macromolecules: ex vivo and in vivo studies. Pharmaceutics. 2019;11:565.

    Article  CAS  PubMed Central  Google Scholar 

  34. Sjögren E, Eriksson J, Vedin C, Breitholtz K, Hilgendorf C. Excised segments of rat small intestine in Ussing chamber studies: a comparison of native and stripped tissue viability and permeability to drugs. Int J Pharm. 2016;505:361–8.

    Article  PubMed  CAS  Google Scholar 

  35. Fattah S, Ismaiel M, Murphy B, Rulikowska A, Frias JM, Winter DC, et al. Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers. Eur J Pharm Sci. 2020;154.

  36. von Erlach T, Saxton S, Shi Y, Minahan D, Reker D, Javid F, et al. Robotically handled whole-tissue culture system for the screening of oral drug formulations. Nat Biomed Eng. 2020;4:544–59.

    Article  CAS  Google Scholar 

  37. Wuyts B, Riethorst D, Brouwers J, Tack J, Annaert P, Augustijns P. Evaluation of fasted and fed state simulated and human intestinal fluids as solvent system in the Ussing chambers model to explore food effects on intestinal permeability. Int J Pharm. 2015;478:736–44.

    Article  CAS  PubMed  Google Scholar 

  38. Riethorst D, Brouwers J, Motmans J, Augustijns P. Human intestinal fluid factors affecting intestinal drug permeation in vitro. Eur J Pharm Sci. 2018;121:338–46.

    Article  CAS  PubMed  Google Scholar 

  39. Presas E, McCartney F, Sultan E, Hunger C, Nellen S, V. Alvarez C, et al. Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. J Control release. 2018;286:402–14.

  40. Taverner A, Dondi R, Almansour K, Laurent F, Owens SE, Eggleston IM, et al. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation. J Control release. 2015;210:189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tuvia S, Pelled D, Marom K, Salama P, Levin-Arama M, Karmeli I, et al. A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharm Res. 2014;31:2010–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thwala LN, Delgado DP, Leone K, Marigo I, Benetti F, Chenlo M, et al. Protamine nanocapsules as carriers for oral peptide delivery. J Control release. 2018;291:157–68.

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Maher S, Brayden DJ. Restoration of rat colonic epithelium after in situ intestinal instillation of the absorption promoter, sodium caprate. Ther Deliv. 2010;1:75–82.

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Werner U, Funke M, Besenius M, Saaby L, Fanø M, et al. SEDDS for intestinal absorption of insulin: application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats. Int J Pharm. 2019;560:377–84.

    Article  CAS  PubMed  Google Scholar 

  45. Dahlgren D, Roos C, Lundqvist A, Tannergren C, Sjöblom M, Sjögren E, et al. Time-dependent effects on small intestinal transport by absorption-modifying excipients. Eur J Pharm Biopharm. 2018;132:19–28.

    Article  CAS  PubMed  Google Scholar 

  46. Dahlgren D, Roos C, Johansson P, Tannergren C, Lundqvist A, Langguth P, et al. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs. Int J Pharm. 2018;547:158–68.

    Article  CAS  PubMed  Google Scholar 

  47. Dahlgren D, Sjöblom M, Lennernäs H. Intestinal absorption-modifying excipients: a current update on preclinical in vivo evaluations. Eur J Pharm Biopharm. 2019;142:411–20.

    Article  CAS  PubMed  Google Scholar 

  48. Hagio M, Matsumoto M, Fukushima M, Hara H, Ishizuka S. Improved analysis of bile acids in tissues and intestinal contents of rats using LC/ESI-MS s&#x20de. J Lipid Res. 2009;50:173–80.

  49. Fancher RM, Zhang H, Sleczka B, Derbin G, Rockar R, Marathe P. Development of a canine model to enable the preclinical assessment of Ph-dependent absorption of test compounds. J Pharm Sci. 2011;100:2979–88.

    Article  CAS  PubMed  Google Scholar 

  50. Hatton GB, Yadav V, Basit AW, Merchant HA. Animal farm: considerations in animal gastrointestinal physiology and relevance to drug delivery in humans. J Pharm Sci. 2015;104:2747–76.

    Article  CAS  PubMed  Google Scholar 

  51. van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003;2:192–204.

    Article  PubMed  Google Scholar 

  52. Sugano K. Biopharmaceutics modeling and simulations theory, practice, methods and applications. Shizuoka, Japan: Wiley; 2012.

    Book  Google Scholar 

  53. Chow EC, Talattof A, Tsakalozou E, Fan J, Zhao L, Zhang X. Using physiologically based pharmacokinetic (PBPK) modeling to evaluate the impact of pharmaceutical excipients on oral drug absorption: sensitivity analyses. AAPS J. 2016;18:1500–11.

    Article  CAS  PubMed  Google Scholar 

  54. Wu F, Cristofoletti R, Zhao L, Rostami-Hodjegan A. Scientific considerations to move towards biowaiver for biopharmaceutical classification system class III drugs: how modeling and simulation can help. Biopharm Drug Dispos. 2021;42:118–27.

    Article  CAS  PubMed  Google Scholar 

  55. Sugano K, Terada K. Rate- and extent-limiting factors of oral drug absorption: theory and applications. J Pharm Sci. 2015;104:2777–88.

    Article  CAS  PubMed  Google Scholar 

  56. Stewart AM, Grass ME. Practical approach to modeling the impact of amorphous drug nanoparticles on the oral absorption of poorly soluble drugs. Mol Pharm. 2020;17:180–9.

    Article  CAS  PubMed  Google Scholar 

  57. Mitra A, Zhu W, Kesisoglou F. Physiologically based absorption modeling for amorphous solid dispersion formulations. Mol Pharm. 2016;13:3206–15.

    Article  CAS  PubMed  Google Scholar 

  58. Avdeef A. Absorption and drug development: solubility, permeability, and charge state. 2nd ed. United States: John Wiley and Sons; 2012.

    Book  Google Scholar 

  59. Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids I: effect of pH under unbuffered conditions. J Pharm Sci Wiley Online Library. 1981;70:13–22.

    CAS  Google Scholar 

  60. Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids II: effect of buffers. J Pharm Sci Wiley Online Library. 1981;70:22–32.

    CAS  Google Scholar 

  61. Krieg BJ, Taghavi SM, Amidon GL, Amidon GE. In vivo predictive dissolution: transport analysis of the CO2, bicarbonate in vivo buffer system. J Pharm Sci. 2014;103:3473–90.

    Article  CAS  PubMed  Google Scholar 

  62. Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7:1388–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Uekusa T, Sugano K. Effect of buffer capacity on dissolution and supersaturation profiles of poorly soluble drug salt. APSJT Annu Meet. Toyama; 2019. p. 236.

  64. Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 1998;15:698–705.

    Article  CAS  PubMed  Google Scholar 

  65. Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T. Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet. 2007;22:225–54.

    Article  CAS  PubMed  Google Scholar 

  66. Okazaki A, Mano T, Sugano K. Theoretical dissolution model of poly-disperse drug particles in biorelevant media. J Pharm Sci. 2007;97.

  67. Amidon GE, Higuchi WI, Ho NFH. Theoretical and experimental studies of transport of micelle-solubilized solutes. J Pharm Sci. 1982;71:77–84.

    Article  CAS  PubMed  Google Scholar 

  68. Poelma FG, Breäs R, Tukker JJ, Crommelin DJ. Intestinal absorption of drugs. The influence of mixed micelles on on the disappearance kinetics of drugs from the small intestine of the rat. J Pharm Pharmacol. 1991;43:317–24.

  69. Yamaguchi T, Ikeda C, Sekine Y. Intestinal absorption of $β$-adrenergic blocking agent nadolol. I.: Comparison of absorption behavior of nadolol with those of other $β$-blocking agents in rats. Chem Pharm Bull. 1986;34:3362–9.

  70. Ingels F, Beck B, Oth M, Augustijns P. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. Int J Pharm. 2004;274:221–32.

    Article  CAS  PubMed  Google Scholar 

  71. Döppenschmitt S, Langguth P, Regårdh CG, Andersson TB, Hilgendorf C, Spahn-Langguth H. Characterization of binding properties to human P-glycoprotein: development of a [3H]verapamil radioligand-binding assay. J Pharmacol Exp Ther. 1999;288:348–57.

    PubMed  Google Scholar 

  72. Lennernäs H, Regårdh C-G. Evidence for an interaction between the $β$-blocker pafenolol and bile salts in the intestinal lumen of the rat leading to dose-dependent oral absorption and double peaks in the plasma concentration–time profile. Pharm Res Springer. 1993;10:879–83.

    Article  Google Scholar 

  73. Akiyama Y, Ito S, Fujita T, Sugano K. Prediction of negative food effect induced by bile micelle binding on oral absorption of hydrophilic cationic drugs. Eur J Pharm Sci. 2020;155.

  74. Sugano K. Estimation of effective intestinal membrane permeability considering bile micelle solubilisation. Int J Pharm. 2009;368.

  75. Oh DM, Curl RL, Amidon GL. Estimating the fraction dose absorbed from suspension of poorly soluble compounds in humans- Amidon- 1993.pdf. Pharm Res. 1993;10:264–70.

  76. Fagerholm U, Lindahl A, Lennernäs H. Regional intestinal permeability in rats of compounds with different physicochemical properties and transport mechanisms. J Pharm Pharmacol Oxford University Press. 1997;49:687–90.

    CAS  Google Scholar 

  77. Sutton SC, Evans LA, Fortner JH, McCarthy JM, Sweeney K. Dog colonoscopy model for predicting human colon absorption. Pharm Res. 2006;23:1554–63.

    Article  CAS  PubMed  Google Scholar 

  78. Yamane M, Matsui K, Sugihara M, Tokunaga Y. The provisional no-effect threshold of sugar alcohols on oral drug absorption estimated by physiologically based biopharmaceutics model. J Pharm Sci: Elsevier; 2020.

    Google Scholar 

  79. Ichijo K, Oda R, Ishihara M, Okada R, Moteki Y, Funai Y, et al. Osmolality of orally administered solutions influences luminal water volume and drug absorption in intestine. J Pharm Sci Elsevier. 2017;106:2889–94.

    Article  CAS  Google Scholar 

  80. Biancheria A, Kegeles G. Diffusion measurements in aqueous solutions of different viscosities. J Am Chem Soc ACS Publications. 1957;79:5908–12.

    Article  CAS  Google Scholar 

  81. Yu LX. An integrated model for determining causes of poor oral drug absorption. Pharm. Res. 1999. p. 1883–7.

  82. Sawamoto T, Haruta S, Kurosaki Y, Higaki K, Kimura T. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J Pharm Pharmacol. 1997;49:450–7.

    Article  CAS  PubMed  Google Scholar 

  83. Yu A, Jackson T, Tsume Y, Koenigsknecht M, Wysocki J, Marciani L, et al. Mechanistic fluid transport model to estimate gastrointestinal fluid volume and its dynamic change over time. AAPS J Springer. 2017;19:1682–90.

    Article  Google Scholar 

  84. Schiller C, Fröhlich CP, Giessmann T, Siegmund W, Mönnikes H, Hosten NWW. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22:971–9.

    Article  CAS  PubMed  Google Scholar 

  85. Mudie DM, Amidon GL, Amidon GE, Murray K, Hoad CL, Pritchard SE, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11:3039–47.

    Article  CAS  PubMed  Google Scholar 

  86. Johnson KC. Mechanistic modeling of gastrointestinal motility with integrated dissolution for simulating drug absorption. ADMET DMPK. Me{\dj}unarodna udruga fizikalnih kemičara; 2020;8:314–24.

  87. Sugano K. Aqueous boundary layers related to oral absorption of a drug: from dissolution of a drug to carrier mediated transport and intestinal wall metabolism. Mol Pharm. 2010;7:1362–73.

    Article  CAS  PubMed  Google Scholar 

  88. Higuchi M, Yoshihashi Y, Tarada K, Sugano K. Minimum rotation speed to prevent coning phenomena in compendium paddle dissolution apparatus. Eur J Pharm Sci. Elsevier B.V.; 2014;65:74–8.

  89. Adson A, Burton PS, Raub TJ, Barsuhn CL, Audus KL, Ho NFH. Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers: uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. J Pharm Sci Elsevier. 1995;84:1197–204.

    Article  CAS  Google Scholar 

  90. Sugano K, Takata N, Machida M, Saitoh K, Terada K. Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. Int J Pharm. 2002;241.

  91. Avdeef A, Tam KY. How well can the caco-2/madin-darby canine kidney models predict effective human jejunal permeability? J Med Chem. 2010;53:3566–84.

    Article  CAS  PubMed  Google Scholar 

  92. Heikkinen AT, Mönkkönen J, Korjamo T. Determination of permeation resistance distribution in in vitro cell monolayer permeation experiments. Eur J Pharm Sci. 2010;40:132–42.

    Article  CAS  PubMed  Google Scholar 

  93. Tachibana T, Kitamura S, Kato M, Mitsui T, Shirasaka Y, Yamashita S, et al. Model analysis of the concentration-dependent permeability of P-gp substrates. Pharm Res Springer. 2010;27:442–6.

    Article  CAS  Google Scholar 

  94. Sugano K, Shirasaka Y, Yamashita S. Estimation of Michaelis-Menten constant of efflux transporter considering asymmetric permeability. Int J Pharm. 2011;418.

  95. Porat D, Dahan A. Active intestinal drug absorption and the solubility-permeability interplay. Int J Pharm. 2018;537:84–93.

    Article  CAS  PubMed  Google Scholar 

  96. Chen Y, Ma F, Jones NS, Yoshida K, Chiang PC, Durk MR, et al. Physiologically-based pharmacokinetic model-informed drug development for fenebrutinib: understanding complex drug-drug interactions. CPT Pharmacometrics Syst Pharmacol. 2020;9:332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamane M, Matsui K, Sugihara M, Tokunaga Y. The provisional no-effect threshold of sugar alcohols on oral drug absorption estimated by physiologically based biopharmaceutics model. J Pharm Sci. 2021;110:467–77.

    Article  CAS  PubMed  Google Scholar 

  98. McFeely SJ, Yu J, Wang Y, Wu C, Ragueneau-Majlessi I. Excipient knowledgebase: development of a comprehensive tool for understanding the disposition and interaction potential of common excipients. CPT Pharmacometrics Syst Pharmacol. 2021;10:953–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zou L, Pottel J, Khuri N, Ngo HX, Ni Z, Tsakalozou E, et al. Interactions of oral molecular excipients with breast cancer resistance protein. BCRP Mol Pharm. 2020;17:748–56.

    Article  CAS  PubMed  Google Scholar 

  100. Zou L, Spanogiannopoulos P, Pieper LM, Chien HC, Cai W, Khuri N, et al. Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives. Proc Natl Acad Sci U S A. 2020;117:16009–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. U.S.: Food and Drug Administration. Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutical classification system. 2017.

  102. U.S.: Food and Drug Administration. Guidance on hydroxychloroquine sulfate. Recommended Apr 2011, Finalized Apr 2020.

  103. U.S.: Food and Drug Administration. FY2021 GDUFA science and research report. Accessed in March, 2022. Available from: https://www.fda.gov/drugs/generic-drugs/fy-2021-gdufa-science-and-research-report

  104. U.S.: Food and Drug Administration. Generic drug research priorities & projects. Accessed in December, 2021. Available from: https://www.fda.gov/drugs/generic-drugs/generic-drug-research-priorities-projects

  105. Malkov D, Wang HZ, Dinh S, Gomez-Orellana I. Pathway of oral absorption of heparin with sodium N-[8-(2-hydroxybenzoyl)amino] caprylate. Pharm Res. 2002;19:1180–4.

    Article  CAS  PubMed  Google Scholar 

  106. Gleeson JP, Frías JM, Ryan SM, Brayden DJ. Sodium caprate enables the blood pressure-lowering effect of Ile-Pro-Pro and Leu-Lys-Pro in spontaneously hypertensive rats by indirectly overcoming PepT1 inhibition. Eur J Pharm Biopharm. 2018;128:179–87.

    Article  CAS  PubMed  Google Scholar 

  107. Tomita M, Doi N, Hayashi M. Effects of acylcarnitines on efflux transporting system in Caco-2 cell monolayers. Eur J Drug Metab Pharmacokinet. 2010;35:1–7.

    Article  CAS  PubMed  Google Scholar 

  108. Alvi MM, Chatterjee P. A prospective analysis of co-processed non-ionic surfactants in enhancing permeability of a model hydrophilic drug. AAPS PharmSciTech. 2014;15:339–53.

    Article  CAS  PubMed  Google Scholar 

  109. Raimondi F, Santoro P, Barone MV, Pappacoda S, Barretta ML, Nanayakkara M, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol. 2008;294.

  110. Söderholm JD, Öman H, Blomquist L, Veen J, Lindmark T, Olaison G. Reversible increase in tight junction permeability to macromolecules in rat ileal mucosa in vitro by sodium caprate, a constituent of milk fat. Dig Dis Sci. 1998;43:1547–52.

    Article  PubMed  Google Scholar 

  111. Lecluyse EL, Sutton SC, Fix JA. In vitro effects of long-chain acylcarnitines on the permeability, transepithelial electrical resistance and morphology of rat colonic mucosa. J Pharmacol Exp Ther. 1993;265:955–62.

    CAS  PubMed  Google Scholar 

  112. McCartney F, Jannin V, Chevrier S, Boulghobra H, Hristov DR, Ritter N, et al. Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: ex vivo and in vivo rat studies. J Control Release. 2019;310:115–26.

    Article  CAS  PubMed  Google Scholar 

  113. Brayden DJ, Stuettgen V. Sodium glycodeoxycholate and sodium deoxycholate as epithelial permeation enhancers: in vitro and ex vivo intestinal and buccal bioassays. Eur J Pharm Sci. 2021;159: 105737.

    Article  CAS  PubMed  Google Scholar 

  114. Brayden D, Creed E, O’Connell A, Leipold H, Agarwal R, Leone-Bay A. Heparin absorption across the intestine: effects of sodium N-[8-(2-hydroxybenzoyl)amino]caprylate in rat in situ intestinal instillations and in Caco-2 monolayers. Pharm Res. 1997;14:1772–9.

    Article  CAS  PubMed  Google Scholar 

  115. Tomita M, Sawada T, Ogawa T, Ouchi H, Hayashi M, Awazu S. Differences in the enhancing effects of sodium caprate on colonic and jejunal drug absorption. Pharm Res. 1992;9:648–53.

    Article  CAS  PubMed  Google Scholar 

  116. Sutton SC, LeCluyse EL, Cammack L, Fix JA. Enhanced bioavailability of cefoxitin using palmitoyl L-carnitine. I. Enhancer activity in different intestinal regions. Pharm Res. 1992;9:191–4.

  117. Koga K, Kawashima S, Murakami M. In vitro and in situ evidence for the contribution of Labrasol and Gelucire 44/14 on transport of cephalexin and cefoperazone by rat intestine. Eur J Pharm Biopharm. 2002;54:311–8.

    Article  CAS  PubMed  Google Scholar 

  118. Fricker G, Fahr A, Beglinger C, Kissel T, Reiter G, Drewe J. Permeation enhancement of octreotide by specific bile salts in rats and human subjects: in vitro, in vivo correlations. Br J Pharmacol. 1996;117:217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dahlgren D, Roos C, Lundqvist A, Tannergren C, Langguth P, Sjöblom M, et al. Preclinical effect of absorption modifying excipients on rat intestinal transport of model compounds and the mucosal barrier marker 51 Cr-EDTA. Mol Pharm. 2017;14:4243–51.

    Article  CAS  PubMed  Google Scholar 

  120. Ates M, Kaynak MS, Sahin S. Effect of permeability enhancers on paracellular permeability of acyclovir. J Pharm Pharmacol. 2016;68:781–90.

    Article  CAS  PubMed  Google Scholar 

  121. Dahlgren D, Sjöblom M, Hedeland M, Lennernäs H. The in vivo effect of transcellular permeation enhancers on the intestinal permeability of two peptide drugs enalaprilat and hexarelin. Pharmaceutics. 2020;12:99.

    Article  CAS  PubMed Central  Google Scholar 

  122. Zhou W, Di LQ, Wang J, Shan JJ, Liu SJ, Ju WZ, et al. Intestinal absorption of forsythoside A in in situ single-pass intestinal perfusion and in vitro Caco-2 cell models. Acta Pharmacol Sin. 2012;33:1069–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shen Y, Lu Y, Jv M, Hu J, Li Q, Tu J. Enhancing effect of Labrasol on the intestinal absorption of ganciclovir in rats. Drug Dev Ind Pharm. 2011;37:1415–21.

    Article  CAS  PubMed  Google Scholar 

  124. Gao H, Wang M, Sun D, Sun S, Sun C, Liu J, et al. Evaluation of the cytotoxicity and intestinal absorption of a self-emulsifying drug delivery system containing sodium taurocholate. Eur J Pharm Sci. 2017;106:212–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Manuscript conceptualization: Marilyn Martinez, Fang Wu, and Balint Sinko.

Manuscript development lead: Marilyn Martinez.

Manuscript development co-leads: Fang Wu and Balint Sinko.

Introduction: Marilyn Martinez, Fang Wu, Balint Sinko, David Brayden, Aaron Stewart, and Michael Glass.

In vitro test selection for bioavailability-enhancing formulations: David J. Brayden, Michael Grass, and Aaron Stewart.

Using in silico models of API-excipient interactions to inform formulation development: Filippos Kesisoglou.

Considerations for the development of predictive models describing the impact of excipients on the rate and extent of oral drug absorption: Michael Grass, Aaron Stewart, and Kiyohiko Sugano.

How might excipients impact bioequivalence assessments of human generic drug products: Fang Wu.

Conclusion: Marilyn Martinez, Fang Wu, and Balint Sinko.

Corresponding author

Correspondence to Marilyn N. Martinez.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Disclaimer

The contents of this manuscript reflect the views of the authors and should not be construed to represent FDA’s views or policies.

Additional information

Guest Editors: Marilyn N. Martinez, Balint Sinko and Fang Wu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Marilyn N. Martinez, Fang Wu, and Balint Sinko are co-editors for the theme issue on “The Biological Effects of Excipients.”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, M.N., Wu, F., Sinko, B. et al. A Critical Overview of the Biological Effects of Excipients (Part II): Scientific Considerations and Tools for Oral Product Development. AAPS J 24, 61 (2022). https://doi.org/10.1208/s12248-022-00713-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00713-1

Keywords

Navigation