Skip to main content

Advertisement

Log in

Effect of the Size of Protein Therapeutics on Brain Pharmacokinetics Following Systematic Administration

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

A Correction to this article was published on 24 May 2022

This article has been updated

Abstract

Here, we have investigated the effect of size of protein therapeutics on brain pharmacokinetics (PK) following systemic administration in rats. All tested proteins were derived from trastuzumab that do not bind to any targets in rats. PK data generated with F(ab)(100 kDa), Fab (50 kDa), and scFv (27 kDa) fragments of trastuzumab, along with published PK data for FcRn non-binding and wild-type trastuzumab (150 kDa), were used to establish a relationship between the protein size and brain exposure. A large-pore microdialysis system was used to measure the PK of proteins in the plasma, the interstitial fluid (ISF) at the striatum (ST), and the cerebrospinal fluid (CSF) at the lateral ventricle (LV) and cisterna magna (CM). Concentrations of all the proteins in plasma, brain homogenate, ISF, and CSF were measured using ELISA. When evaluating the effect of protein size in the absence of FcRn binding, we found a bell-shaped relationship between the size and ISF/plasma AUC ratio, where 100 kDa F(ab)2 demonstrated the highest exposure. A similar bell-shaped relationship was observed for the brain homogenate/plasma AUC ratio, with a peak at 50 kDa. The CSF/plasma AUC ratio at LV increased monotonously with a decrease in the size of proteins. We observed that the exposure of protein therapeutics in different regions of the brain could be significantly different and there could be optimal sizes of protein therapeutics to accomplish maximum/selective exposure in selected brain regions following systemic administration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Abbreviations

BBB:

Blood-brain barrier

BCSFB:

Blood-cerebrospinal fluid barrier

CHO:

Chinese Hamster Ovary

CM:

Cisterna magna

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CSF(CM):

CSF at the CM

CSF(LV):

CSF at the LV

ELISA:

Enzyme-linked immunosorbent assay

IgG:

Immunoglobulin G

ISF:

Interstitial fluid

ISF(ST):

ISF at ST

IV:

Intravenous

KD:

Dissociation constant

LV:

Lateral ventricles

mAbs:

Monoclonal antibodies

PD:

Pharmacodynamic

PK:

Pharmacokinetics

RMT:

Receptor-mediated transcytosis

sdAb:

Single-domain antibody

ST:

Striatum

References

  1. de Lange EC. Utility of CSF in translational neuroscience. J Pharmacokinet Pharmacodyn. 2013;40(3):315–26.

    Article  CAS  Google Scholar 

  2. Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv. 2016;13(7):963–75.

    Article  CAS  Google Scholar 

  3. Bryniarski MA, Ren T, Rizvi AR, Snyder AM, Morris ME. Targeting the choroid plexuses for protein drug delivery. Pharmaceutics. 2020;12(10).

  4. Hurley JV, Anderson RM, Sexton PT. The fate of plasma protein which escapes from blood vessels of the choroid plexus of the rat–an electron microscope study. J Pathol. 1981;134(1):57–70.

    Article  CAS  Google Scholar 

  5. Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol. 2019;181:101665.

  6. Stanimirovic DB, Sandhu JK, Costain WJ. Emerging technologies for delivery of biotherapeutics and gene therapy across the blood-brain barrier. BioDrugs. 2018;32(6):547–59.

    Article  CAS  Google Scholar 

  7. Chang HY, Wu S, Li Y, Zhang W, Burrell M, Webster CI, Shah DK. Brain pharmacokinetics of anti- transferrin receptor antibody affinity variants in rats determined using microdialysis. MAbs. 2021;13(1):1874121.

    Article  Google Scholar 

  8. Finke JM, Banks WA. Modulators of IgG penetration through the blood-brain barrier: implications for Alzheimer’s disease immunotherapy. Hum Antibodies. 2017;25(3–4):131–46.

    Article  CAS  Google Scholar 

  9. Poduslo JF, Ramakrishnan M, Holasek SS, Ramirez-Alvarado M, Kandimalla KK, Gilles EJ, Curran GL, Wengenack TM. In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques. J Neurochem. 2007;102(2):420–33.

    Article  CAS  Google Scholar 

  10. Tamura Y, Hamajima K, Matsui K, Yanoma S, Narita M, Tajima N, Xin KQ, Klinman D, Okuda K. The F(ab)’2 fragment of an Abeta-specific monoclonal antibody reduces Abeta deposits in the brain. Neurobiol Dis. 2005;20(2):541–9.

    Article  CAS  Google Scholar 

  11. Wolak DJ, Thorne RG. Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm. 2013;10(5):1492–504.

    Article  CAS  Google Scholar 

  12. Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006;103(14):5567–72.

    Article  CAS  Google Scholar 

  13. Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks MJ, Abbott NJ, Meyerand ME, Sorokin L, Stanimirovic DB, Thorne RG. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol. 2018;596(3):445–75.

    Article  CAS  Google Scholar 

  14. Pepinsky RB, Shao Z, Ji B, Wang Q, Meng G, Walus L, Lee X, Hu Y, Graff C, Garber E, Meier W, Mi S. Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. J Pharmacol Exp Ther. 2011;339(2):519–29.

    Article  CAS  Google Scholar 

  15. Farrington GK, Caram-Salas N, Haqqani AS, Brunette E, Eldredge J, Pepinsky B, Antognetti G, Baumann E, Ding W, Garber E, Jiang S, Delaney C, Boileau E, Sisk WP, Stanimirovic DB. A novel platform for engineering blood-brain barrier-crossing bispecific biologics. FASEB J. 2014;28(11):4764–78.

    Article  CAS  Google Scholar 

  16. Wang Q, Delva L, Weinreb PH, Pepinsky RB, Graham D, Veizaj E, Cheung AE, Chen W, Nestorov I, Rohde E, Caputo R, Kuesters GM, Bohnert T, Gan LS. Monoclonal antibody exposure in rat and cynomolgus monkey cerebrospinal fluid following systemic administration. Fluids Barriers CNS. 2018;15(1):10.

    Article  Google Scholar 

  17. Chang HY, Morrow K, Bonacquisti E, Zhang W, Shah DK. Antibody pharmacokinetics in rat brain determined using microdialysis. MAbs. 2018;10(6):843–53.

    Article  CAS  Google Scholar 

  18. Chang HY, Wu S, Meno-Tetang G, Shah DK. A translational platform PBPK model for antibody disposition in the brain. J Pharmacokinet Pharmacodyn. 2019;46(4):319–38.

    Article  CAS  Google Scholar 

  19. Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56(3):248–52.

    Article  CAS  Google Scholar 

  20. Li Z, Li Y, Chang HP, Chang HY, Guo L, Shah DK. Effect of size on solid tumor disposition of protein therapeutics. Drug Metab Dispos. 2019;47(10):1136–45.

    Article  CAS  Google Scholar 

  21. Hillman J, Aneman O, Anderson C, Sjogren F, Saberg C, Mellergard P. A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery. 2005;56(6):1264–1268; Discussion 1268–1270.

  22. Trickler WJ, Miller DW. Use of osmotic agents in microdialysis studies to improve the recovery of macromolecules. J Pharm Sci. 2003;92(7):1419–27.

    Article  CAS  Google Scholar 

  23. Jadhav SB, Khaowroongrueng V, Fueth M, Otteneder MB, Richter W, Derendorf H. Tissue distribution of a therapeutic monoclonal antibody determined by large pore microdialysis. J Pharm Sci. 2017;106(9):2853–9.

    Article  CAS  Google Scholar 

  24. Jadhav SB, Khaowroongrueng V, Derendorf H. Microdialysis of large molecules. J Pharm Sci. 2016;105(11):3233–42.

    Article  CAS  Google Scholar 

  25. Sjogren F, Svensson C, Anderson C. Technical prerequisites for in vivo microdialysis determination of interleukin-6 in human dermis. Br J Dermatol. 2002;146(3):375–82.

    CAS  PubMed  Google Scholar 

  26. Rukwied R, Lischetzki G, McGlone F, Heyer G, Schmelz M. Mast cell mediators other than histamine induce pruritus in atopic dermatitis patients: a dermal microdialysis study. Br J Dermatol. 2000;142(6):1114–20.

    Article  CAS  Google Scholar 

  27. Papoiu AD, Wang H, Nattkemper L, Tey HL, Ishiuji Y, Chan YH, Schmelz M, Yosipovitch G. A study of serum concentrations and dermal levels of NGF in atopic dermatitis and healthy subjects. Neuropeptides. 2011;45(6):417–22.

    Article  CAS  Google Scholar 

  28. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vorstenbosch C, European Federation of Pharmaceutical Industries A, European Centre for the Validation of Alternative M. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001;21(1):15–23.

  29. Nedelman JR, Gibiansky E, Lau DT. Applying Bailer’s method for AUC confidence intervals to sparse sampling. Pharm Res. 1995;12(1):124–8.

    Article  CAS  Google Scholar 

  30. Motulsky H. Intuitive biostatistics: a nonmathematical guide to statistical thinking. New York: Oxford University Press; 2018.

    Google Scholar 

  31. Da Mesquita S, Fu Z, Kipnis J. The meningeal lymphatic system: a new player in neurophysiology. Neuron. 2018;100(2):375–88.

    Article  Google Scholar 

  32. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210–9.

    Article  Google Scholar 

  33. Tamura R, Yoshida K, Toda M. Current understanding of lymphatic vessels in the central nervous system. Neurosurg Rev. 2020;43(4):1055–64.

    Article  Google Scholar 

  34. Li Z, Krippendorff BF, Shah DK. Influence of molecular size on the clearance of antibody fragments. Pharm Res. 2017;34(10):2131–2141.

Download references

Acknowledgements

We thank Dr. Kristin Hill and Dr. Vivian Rodriguez-Cruz for their advice on in vivo catheterization surgery. We also thank Dr. Lena Medina (Instech infusion) for the advice on the blood collection. Finally, we thank Dr. Chunxia Qiao for the advice on the scFv plasmid and the pcDNA5_FRT plasmid.

Funding

This research was funded by the grant from the Center for Protein Therapeutics (CPT) at the University at Buffalo. DKS is also supported by National Institute of General Medical Sciences grant [GM114179], National Institute of Allergy and Infectious Diseases grant [AI138195], and National Cancer Institute grants [R01CA246785 and R01CA256928].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Dhaval K. Shah, Hsueh-Yuan Chang, Shengjia Wu.

ScFv expression in CHO cells: Leiming Guo.

Protein Purification: Hsueh-Yuan Chang, Yingyi Li, Leiming Guo.

In vivo investigation: Hsueh-Yuan Chang, Shengjia Wu, Yuelin Li.

Corresponding authors

Correspondence to Hsueh-Yuan Chang or Dhaval K. Shah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 528 kb)

Supplementary Video 1 (MOV 34.4 MB)

Supplementary Video 2 (MP4 2.79 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, HY., Wu, S., Li, Y. et al. Effect of the Size of Protein Therapeutics on Brain Pharmacokinetics Following Systematic Administration. AAPS J 24, 62 (2022). https://doi.org/10.1208/s12248-022-00701-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00701-5

KEY WORDS

Navigation