El-Kattan A, Varm M. Oral absorption, intestinal metabolism and human oral bioavailability. In: Paxton J, editor. Topics on Drug Metabolism. Croatia: InTech; 2012. p. 1–34.
Sugano K. Biopharmaceutics modeling and simulations: theory, practice, methods, and applications. New Jersey: Wiley, 2012.
Panakanti R, Narang AS. Impact of excipient interactions on drug bioavailability from solid dosage forms. Pharm Res. 2012;29(10):2639–59. https://doi.org/10.1007/s11095-012-0767-8.
CAS
Article
PubMed
Google Scholar
Flanagan T. Potential for pharmaceutical excipients to impact absorption: a mechanistic review for BCS Class 1 and 3 drugs. Eur J Pharm Biopharm: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2019;141:130–8. https://doi.org/10.1016/j.ejpb.2019.05.020.
CAS
Article
Google Scholar
García-Arieta A. Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence. Eur J Pharm Sci. 2014;65:89–97. https://doi.org/10.1016/j.ejps.2014.09.004.
CAS
Article
PubMed
Google Scholar
Chen ML, Straughn AB, Sadrieh N, Meyer M, Faustino PJ, Ciavarella AB, Meibohm B, Yates CR, Hussain AS. A modern view of excipient effects on bioequivalence: case study of sorbitol. Pharm Res. 2007;24(1):73–80. https://doi.org/10.1007/s11095-006-9120-4.
CAS
Article
PubMed
Google Scholar
Fassihi AR, Dowse R, Robertson SSD. Influence of sorbitol solution on the bioavailability of theophylline. Int J Pharm. 1991;72(2):175–8. https://doi.org/10.1016/0378-5173(91)90056-T.
CAS
Article
Google Scholar
Shesky P, Sackett G, Maher L, Lentz KA, Tolle S, Polli JE. Roll compaction granulation of a controlled-release matrix tablet containing HPMC: effect of process scale-up on robustness of tablets and predicted in vivo performance. Pharm Tech. 1999;23(suppl):6–21.
Google Scholar
Vaithianathan S, Haidar SH, Zhang X, Jiang W, Avon C, Dowling TC, Shao C, Kane M, Hoag SW, Flasar MH, Ting TY, Polli JE. Effect of common excipients on the oral drug absorption of Biopharmaceutics Classification System class 3 Drugs cimetidine and acyclovir. J Pharm Sci. 2016;105(2):996–1005. https://doi.org/10.1002/jps.24643.
CAS
Article
PubMed
Google Scholar
European Medicines Agency (EMA). Committee for Medicinal Products for Human Use (CHMP), EMA/CHMP/ICH/493213/2018. ICH M9 guideline on biopharmaceutics classification system-based biowaivers (Step 5). 2020. https://www.ema.europa.eu/en/documents/scientificguideline/ich-m9-biopharmaceutics-classification-system-based-biowaivers-step-5_en.pdf. Accessed 02 Oct 2021.
Food and Drug Administration (FDA). Guidance for industry: M9 Biopharmaceutics Classification System-Based Biowaivers. Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER);May 2021.
Cook JA, Davit BM, Polli JE. Impact of Biopharmaceutics Classification System-based biowaivers. Mol Pharm. 2010;7(5):1539–44. https://doi.org/10.1021/mp1001747.
CAS
Article
PubMed
Google Scholar
Polli JE. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms. AAPS J. 2008;10(2):289–99.
CAS
Article
Google Scholar
Shah VP, Amidon GL. G.L. Amidon, H. Lennernas, V.P. Shah, and J.R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413–420, 1995—Backstory of BCS. AAPS J. 2014;16(5):894–8. https://doi.org/10.1208/s12248-014-9620-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Food and Drug Administration (FDA). Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Center for Drug Evaluation and Research (CDER);December 2017.
European Medicines Agency (EMA). Committee for Medicinal Products for Human Use (CHMP), CPMP/EWP/QWP/1401/98 Rev. 1/ Corr **. Guideline on the investigation of bioequivalence. 2010. https://www.ema.europa.eu/en/documents/scientific-guideline/guidelineinvestigation-bioequivalence-rev1_en.pdf. Accessed 02 Oct 2021.
Davit BM, Kanfer I, Tsang YC, Cardot JM. BCS Biowaivers: similarities and differences among EMA, FDA, and WHO requirements. AAPS J. 2016;18(3):612–8. https://doi.org/10.1208/s12248-016-9877-2.
Article
PubMed
PubMed Central
Google Scholar
Metry M, Shu Y, Abrahamsson B, Cristofoletti R, Dressman JB, Groot DW, Parr A, Langguth P, Shah VP, Tajiri T, Mehta MU, Polli JE. Biowaiver monographs for immediate release solid oral dosage forms: metformin hydrochloride. J Pharm Sci. 2021;110(4):1513–26. https://doi.org/10.1016/j.xphs.2021.01.011.
CAS
Article
PubMed
Google Scholar
Charoo NA, Abdallah DB, Bakheit AA, Haque KU, Hassan HA, Abrahamsson B, et al. Biowaiver monograph for immediate-release solid oral dosage forms: sitagliptin phosphate monohydrate. J Pharm Sci. 2021(1520-6017 (Electronic)); https://doi.org/10.1016/j.xphs.2021.09.031.
Charoo NA, Abdallah DB, Parveen T, Abrahamsson B, Cristofoletti R, Groot DW, Langguth P, Parr A, Polli JE, Mehta M, Shah VP, Tajiri T, Dressman J. Biowaiver monograph for immediate-release solid oral dosage forms: moxifloxacin hydrochloride. J Pharm Sci. 2020;109(9):2654–75. https://doi.org/10.1016/j.xphs.2020.06.007.
CAS
Article
PubMed
Google Scholar
García MA, Cristofoletti R, Abrahamsson B, Groot DW, Parr A, Polli JE, et al. Biowaiver monograph for immediate-release solid oral dosage forms: carbamazepine. J Pharm Sci. 2021;110(5):1935–1947. https://doi.org/10.1016/j.xphs.2021.02.019.
Rescigno A. Bioequivalence. Pharm Res. 1992;9(7):925–8. https://doi.org/10.1023/a:1015809201503.
CAS
Article
PubMed
Google Scholar
Bois FY, Fau TT, Fau HW, Fau CM, Fau PR, Williams RL. Bioequivalence: performance of several measures of rate of absorption. Pharm Res. 1994;11(7):966–74. https://doi.org/10.1023/a:1018970901116.
CAS
Article
PubMed
Google Scholar
Polli JE. Rekhi Gs, Augsburger LL, Shah VP. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J Pharm Sci. 1997;86(6):690–700. https://doi.org/10.1021/js960473x.
Chinchilli VM, Elswick RK Jr. The multivariate assessment of bioequivalence. J Biopharm Stat. 1997;7(1):113–23. https://doi.org/10.1080/10543409708835173.
CAS
Article
PubMed
Google Scholar
Bois FY, Fau TT, Hauck WW, Chen ML, Patnaik R, Williams RL. Bioequivalence: performance of several measures of extent of absorption. Pharm Res. 1994;11(5):715–22.
CAS
Article
Google Scholar
Endrenyi L, Fau FS, Yan W. Cmax/AUC is a clearer measure than Cmax for absorption rates in investigations of bioequivalence. Int J Clin Pharmacol Ther Toxicol. 1991;29(10):394–9.
CAS
PubMed
Google Scholar
Marston SA, Polli JE. Evaluation of direct curve comparison metrics applied to pharmacokinetic profiles and relative bioavailability and bioequivalence. Pharm Res. 1997;14(10):1363–9.
CAS
Article
Google Scholar
Chen ML, Lesko L, Williams RL. Measures of exposure versus measures of rate and extent of absorption. Clin Pharmacokinet. 2001;40(8):565–72.
CAS
Article
Google Scholar
Cristofoletti R, Chiann C, Dressman JB, Storpirtis S. A comparative analysis of biopharmaceutics classification system and biopharmaceutics drug disposition classification system: a cross-sectional survey with 500 bioequivalence studies. J Pharm Sci. 2013;102(9):3136–44.
CAS
Article
Google Scholar
Food and Drug Administration Center for Drug Evaluation and Research. Guidance for industry: using the Inactive Ingredient Database. 2019. https://www.fda.gov/media/128687/download. Accessed 02 Oct 2021.
Lenhart A, Chey WD. A systematic review of the effects of polyols on gastrointestinal health and irritable bowel syndrome. Adv Nutr. 2017;8(4):587–96. https://doi.org/10.3945/an.117.015560.
Article
PubMed
PubMed Central
Google Scholar
Adkin DA, Davis SS, Sparrow RA, Huckle PD, Phillips AJ, Wilding IR. The effects of pharmaceutical excipients on small intestinal transit. Br J Clin Pharmacol. 1995;39(4):381–7. https://doi.org/10.1111/j.1365-2125.1995.tb04466.x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yamane M, Matsui K, Sugihara M, Tokunaga Y. The provisional no-effect threshold of sugar alcohols on oral drug absorption estimated by physiologically based biopharmaceutics model. J Pharm Sci. 2021;110(1):467–77. https://doi.org/10.1016/j.xphs.2020.05.013.
CAS
Article
PubMed
Google Scholar
Adkin DA, Davis SS, Sparrow RA, Huckle PD, Wilding IR. The effect of mannitol on the oral bioavailability of cimetidine. J Pharm Sci. 1995;84(12):1405–9. https://doi.org/10.1002/jps.2600841205.
CAS
Article
PubMed
Google Scholar
Adkison K, Wolstenholme A, Lou Y, Zhang Z, Eld A, Perger T, Vangerow H, Hayward K, Shaefer M, McCoig C. Effect of sorbitol on the pharmacokinetic profile of lamivudine oral solution in adults: an open-label, randomized study. Clin Pharmacol Ther. 2018;103(3):402–8. https://doi.org/10.1002/cpt.943.
CAS
Article
PubMed
Google Scholar
Strauch S, Jantratid E, Dressman JB, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: lamivudine. J Pharm Sci. 2011;100(6):2054–63. https://doi.org/10.1002/jps.22449.
CAS
Article
PubMed
Google Scholar
Sv O, Relleke M, Piniella PM. Lack of bioequivalence between generic risperidone oral solution and originator risperidone tablets. Int J Clin Pharmacol Ther. 2007;45(5 (Print)):293–9.
Google Scholar
Sjogren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, et al. In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci. 2014;57:99–151. https://doi.org/10.1016/j.ejps.2014.02.010.
CAS
Article
PubMed
Google Scholar
Parr A, Hidalgo IJ, Bode C, Brown W, Yazdanian M, Gonzalez MA, Sagawa K, Miller K, Jiang W, Stippler ES. The effect of excipients on the permeability of BCS class III compounds and implications for biowaivers. Pharm Res. 2016;33(1):167–76. https://doi.org/10.1007/s11095-015-1773-4.
CAS
Article
PubMed
Google Scholar
Gurjar RA-O, Chan CYS, Curley P, Sharp J, Chiong J, Rannard S, et al. Inhibitory effects of commonly used excipients on P-glycoprotein in vitro. Mol Pharm. 2018;15(11):4835–42.
CAS
Article
Google Scholar
Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm. 2004;278(1):119–31. https://doi.org/10.1016/j.ijpharm.2004.03.001.
CAS
Article
PubMed
Google Scholar
Food and Drug Administration Center for Drug Evaluation and Research. Guidance for industry: scale-up and postapproval changes - immediate release solid oral dosage forms (SUPAC-IR). 1995. https://www.fda.gov/media/70949/download. Accessed 02 Oct 2021.
Gupta E, Barends DM, Yamashita E, Lentz KA, Harmsze AM, Shah VP, Dressman JB, Lipper RA. Review of global regulations concerning biowaivers for immediate release solid oral dosage forms. Eur J Pharm Sci. 2006;29(3-4):315–24. https://doi.org/10.1016/j.ejps.2006.05.001.
CAS
Article
PubMed
Google Scholar
Food and Drug Administration Center for Drug Evaluation and Research. Guidance for industry: submission of summary bioequivalence data for ANDAs. 2011. https://www.fda.gov/media/75535/download. Accessed 02 Oct 2021.
Plöger GF, Quizon PM, Abrahamsson B, Cristofoletti R, Groot DW, Parr A, Langguth P, Polli JE, Shah VP, Tajiri T, Mehta MU, Dressman J. Biowaiver monographs for immediate release solid oral dosage forms: cephalexin monohydrate. J Pharm Sci. 2020;109(6):1846–62. https://doi.org/10.1016/j.xphs.2020.03.025.
CAS
Article
PubMed
Google Scholar
Midha KK, Hubbard JW, Rawson M, Gavalas L. The application of partial areas in assessment of rate and extent of absorption in bioequivalence studies of conventional release products: experimental evidence. Eur J Pharm Sci. 1994;2(5):351–63. https://doi.org/10.1016/0928-0987(94)00062-X.
CAS
Article
Google Scholar
Otter M, Oswald S, Siegmund W, Keiser M. Effects of frequently used pharmaceutical excipients on the organic cation transporters 1-3 and peptide transporters 1/2 stably expressed in MDCKII cells. Eur J Pharm Biopharm: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2017;112:187–95. https://doi.org/10.1016/j.ejpb.2016.11.028.
CAS
Article
Google Scholar
Ashford M. Bioavailability – physicochemical and dosage form factors. In: Aulton ME, Taylor KMG, editors. Aulton’s pharmaceutics: the design and manufacture of medicines. Netherlands: Elsevier; 2018. p. 319–338.
Chen M-L, Sadrieh N, Yu L. Impact of osmotically active excipients on bioavailability and bioequivalence of BCS class III drugs. AAPS J. 2013;15(4):1043–50. https://doi.org/10.1208/s12248-013-9509-z.
Article
PubMed
PubMed Central
Google Scholar
Yang B, Smith DE. Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice. Drug Metab Dispos. 2013;41(3):608–14. https://doi.org/10.1124/dmd.112.049239.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ganapathy ME, Huang W, Wang H, Ganapathy V, Leibach FH. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun. 1998;246(2):470–5. https://doi.org/10.1006/bbrc.1998.8628.
CAS
Article
PubMed
Google Scholar
Zhang W, Li Y, Zou P, Wu M, Zhang Z, Zhang T. The effects of pharmaceutical excipients on gastrointestinal tract metabolic enzymes and transporters-an Update. AAPS J. 2016;18(4):830–43. https://doi.org/10.1208/s12248-016-9928-8.
CAS
Article
PubMed
Google Scholar
Rege BD, Yu LX, Hussain AS, Polli JE. Effect of common excipients on Caco-2 transport of low-permeability drugs. J Pharm Sci. 2001;90(11):1776–86. https://doi.org/10.1002/jps.1127.
CAS
Article
PubMed
Google Scholar
Rege BD, Kao JP, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16(4-5):237–46. https://doi.org/10.1016/s0928-0987(02)00055-6.
CAS
Article
PubMed
Google Scholar
Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009;6(1):19–28. https://doi.org/10.1021/mp800088f.
CAS
Article
PubMed
Google Scholar
Bajaj R, Chong LB, Zou L, Tsakalozou E, Ni Z, Giacomini KM, et al. In vitro evaluation of excipients as inhibitors of human intestinal P-glycoprotein. The FASEB Journal. 2019;33(S1) 814.3-.3 https://doi.org/10.1096/fasebj.2019.33.1_supplement.814.3.
Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16(10):1550–6. https://doi.org/10.1023/a:1015000503629.
CAS
Article
PubMed
Google Scholar
Bogman K, Erne-Brand F, Alsenz J, Drewe J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J Pharm Sci. 2003;92(6):1250–61. https://doi.org/10.1002/jps.10395.
CAS
Article
PubMed
Google Scholar
Bittner B, Guenzi A, Fullhardt P, Zuercher G, Gonzalez RC, Mountfield RJ. Improvement of the bioavailability of colchicine in rats by co-administration of D-alpha-tocopherol polyethylene glycol 1000 succinate and a polyethoxylated derivative of 12-hydroxy-stearic acid. Arzneimittelforschung. 2002;52(9):684–8. https://doi.org/10.1055/s-0031-1299951.
CAS
Article
PubMed
Google Scholar
Anderle P, Niederer E, Rubas W, Hilgendorf C, Spahn-Langguth H, Wunderli-Allenspach H, Merkle HP, Langguth P. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J Pharm Sci. 1998;87(6):757–62. https://doi.org/10.1021/js970372e.
CAS
Article
PubMed
Google Scholar
Collett A, Higgs NB, Sims E, Rowland M, Warhurst G. Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J Pharmacol Exp Ther. 1999;288(1):171–8.
CAS
PubMed
Google Scholar
Twarog C, Fattah S, Heade J, Maher S, Fattal E, Brayden DJ. Intestinal permeation enhancers for oral delivery of macromolecules: a comparison between salcaprozate sodium (SNAC) and sodium caprate (C10). Pharmaceutics. 2019;11(2):78. https://doi.org/10.3390/pharmaceutics11020078.
CAS
Article
PubMed Central
Google Scholar
Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin HC, Lennernas H, Zhong Y, Amidon GL, Yu LX, Sun D. Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res. 2006;23(8):1675–86. https://doi.org/10.1007/s11095-006-9041-2.
CAS
Article
PubMed
Google Scholar
Birch D, Diedrichsen RG, Christophersen PC, Mu H, Nielsen HM. Evaluation of drug permeation under fed state conditions using mucus-covered Caco-2 cell epithelium. Eur J Pharm Sci. 2018;118:144–53. https://doi.org/10.1016/j.ejps.2018.02.032.
CAS
Article
PubMed
Google Scholar
Volpe DA. Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J Pharm Sci. 2008;97(2):712–25. https://doi.org/10.1002/jps.21010.
CAS
Article
PubMed
Google Scholar
Jin X, Luong TL, Reese N, Gaona H, Collazo-Velez V, Vuong C, Potter B, Sousa JC, Olmeda R, Li Q, Xie L, Zhang J, Zhang P, Reichard G, Melendez V, Marcsisin SR, Pybus BS. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. J Pharmacol Toxicol Methods. 2014;70(2):188–94. https://doi.org/10.1016/j.vascn.2014.08.002.
CAS
Article
PubMed
Google Scholar
Avdeef A, Tam KY. How well can the Caco-2/Madin-Darby canine kidney models predict effective human jejunal permeability? J Med Chem. 2010;53(9):3566–84.
CAS
Article
Google Scholar
Wikman A, Karlsson J, Carlstedt I, Artursson P. A drug absorption model based on the mucus layer producing human intestinal goblet cell line HT29-H. Pharm Res. 1993;10(6):843–52. https://doi.org/10.1023/a:1018905109971.
CAS
Article
PubMed
Google Scholar
Behrens I, Stenberg P, Artursson P, Kissel T. Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells. Pharm Res. 2001;18(8):1138–45. https://doi.org/10.1023/a:1010974909998.
CAS
Article
PubMed
Google Scholar
Kleiveland CR. Co-cultivation of Caco-2 and HT-29MTX. In: Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, et al., editors. The impact of food bioactives on health: in vitro and ex vivo models. Cham (CH): Springer International Publishing; 2015. p. 135–40.
Google Scholar
Hilgendorf C, Spahn-Langguth H, Regardh CG, Lipka E, Amidon GL, Langguth P. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci. 2000;89(1):63–75. https://doi.org/10.1002/(SICI)1520-6017(200001)89:1<63::AID-JPS7>3.0.CO;2-6.
CAS
Article
PubMed
Google Scholar
Lozoya-Agullo I, Araújo F, González-Álvarez I, Merino-Sanjuán M, González-Álvarez M, Bermejo M, Sarmento B. Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B coculture models to predict intestinal and colonic permeability compared to Caco-2 monoculture. Mol Pharm. 2017;14(4):1264–70.
CAS
Article
Google Scholar
Darling NJ, Mobbs CL, González-Hau AL, Freer M, Przyborski S. Bioengineering novel in vitro co-culture models that represent the human intestinal mucosa with improved Caco-2 structure and barrier function. Front Bioeng Biotechnol. 2020;8:992.
Article
Google Scholar
Dahlgren DA-O, Lennernäs H. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics. 2019;11(8):411.
CAS
Article
Google Scholar
Food and Drug Administration (FDA). Guidance for industry: in vitro drug interaction studies — cytochrome P450 enzyme- and transporter-mediated drug interactions. Center for Drug Evaluation and Research (CDER); January 2020.
Food and Drug Administration (FDA). Guidance for industry: clinical drug interaction studies — cytochrome P450 enzyme- and transporter-mediated drug interactions. Center for Drug Evaluation and Research (CDER); January 2020.
Food and Drug Administration (FDA). Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers. 2020. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers Accessed 02 Oct 2021.
Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res. 2000;17(12):1456–60. https://doi.org/10.1023/a:1007692622216.
CAS
Article
PubMed
Google Scholar
Jantratid E, Prakongpan S, Dressman JB, Amidon GL, Junginger HE, Midha KK, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: cimetidine. J Pharm Sci. 2006;95(5):974–84. https://doi.org/10.1002/jps.20614.
CAS
Article
PubMed
Google Scholar
Trueck C, Hsin CH, Scherf-Clavel O, Schaeffeler E, Lenssen R, Gazzaz M, Gersie M, Taubert M, Quasdorff M, Schwab M, Kinzig M, Sörgel F, Stoffel MS, Fuhr U. A clinical drug-drug interaction study assessing a novel drug transporter phenotyping cocktail with adefovir, sitagliptin, metformin, pitavastatin, and digoxin. Clin Pharmacol Ther. 2019;106(6):1398–407. https://doi.org/10.1002/cpt.1564.
CAS
Article
PubMed
Google Scholar
Nader AM, Foster DR. Suitability of digoxin as a P-glycoprotein probe: implications of other transporters on sensitivity and specificity. J Clin Pharmacol. 2014;54(1):3–13.
CAS
Article
Google Scholar
LANOXIN [package insert]. Concordia Pharmaceuticals, Inc.; 2015.
Caldeira TG, Ruiz-Picazo A, Lozoya-Agullo I, Saude-Guimaraes DA, Gonzalez-Alvarez M, de Souza J, et al. Determination of intestinal permeability using in situ perfusion model in rats: Challenges and advantages to BCS classification applied to digoxin. Int J Pharm. 2018;551(1-2):148–57. https://doi.org/10.1016/j.ijpharm.2018.09.022.
CAS
Article
PubMed
Google Scholar
Chu X, Liao M, Shen H, Yoshida K, Zur AA, Arya V, Galetin A, Giacomini KM, Hanna I, Kusuhara H, Lai Y, Rodrigues D, Sugiyama Y, Zamek-Gliszczynski MJ, Zhang L, on behalf of the International Transporter Consortium. Clinical probes and endogenous biomarkers as substrates for transporter drug-drug interaction evaluation: perspectives from the International Transporter Consortium. Clin Pharmacol Ther. 2018;104(5):836–64. https://doi.org/10.1002/cpt.1216.
CAS
Article
PubMed
Google Scholar