Skip to main content

Advertisement

Log in

Reactive Oxygen Species–Responsive Celastrol-Loaded Bilirubin Nanoparticles for the Treatment of Rheumatoid Arthritis

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

A Correction to this article was published on 01 January 2022

This article has been updated

Abstract

Celastrol (CLT) has shown anti-rheumatic activity against rheumatoid arthritis, while its poor water solubility and high organ toxicity restrict its further therapeutic applications. To mitigate these challenges, a reactive oxygen species (ROS)–responsive nanoparticle was developed for celastrol delivery based on the excessive ROS at the pathologic sites, which was synthesized by conjugating bilirubin to a polyethylene glycol (PEG) chain. The PEGylated bilirubin self-assembled into nanoparticle (BRNP) in aqueous solution had a hydrodynamic diameter of around 68.6 nm, and celastrol was loaded into BRNP (CLT/BRNP) with a drug encapsulation efficiency of 72.6% and a loading capacity of 6.6%. In vitro study revealed that CLT/BRNP exhibited the capacity of scavenging intracellular ROS and down-regulating the level of nitric oxide after it was effectively internalized by activated macrophages. Furthermore, in adjuvant-induced arthritis rats, BRNP was accumulated preferentially at inflamed joints, alleviating the joint swelling and bone erosion, which significantly decreased the secretion of pro-inflammatory cytokines to suppress the RA progression. Importantly, CLT/BRNP markedly enhanced its anti-arthritic effect and attenuated the toxic effect compared with free celastrol. Taken together, our results suggested that CLT/BRNP could be used for targeted drug delivery in rheumatoid arthritis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis[J]. N Engl J Med. 2011;365(23):2205–19. https://doi.org/10.1056/NEJMra1004965.

    Article  CAS  PubMed  Google Scholar 

  2. Chen Z, Bozec A, Ramming A, et al. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis[J]. Nat Rev Rheumatol. 2019;15(1):9–17. https://doi.org/10.1038/s41584-018-0109-2.

    Article  CAS  PubMed  Google Scholar 

  3. Combe B, van Vollenhoven R. Novel targeted therapies: the future of rheumatoid arthritis? Mavrilumab and tabalumab as examples[J]. 2013. https://doi.org/10.1136/annrheumdis-2013-203261.

    Article  Google Scholar 

  4. Ćalasan MB, van den Bosch OFC, Creemers MCW, et al. Prevalence of methotrexate intolerance in rheumatoid arthritis and psoriatic arthritis[J]. Arthritis Res Ther. 2013;15(6):1–5. https://doi.org/10.1186/ar4413.

    Article  CAS  Google Scholar 

  5. Fan X, Xu M, Leung ELH, et al. ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria[J]. Nano-Micro Letters. 2020;12(1):1–14. https://doi.org/10.1007/s40820-020-0410-x.

    Article  CAS  Google Scholar 

  6. Cascao R, Vidal B, Raquel H, et al. Effective treatment of rat adjuvant-induced arthritis by celastrol[J]. Autoimmun Rev. 2012;11(12):856–62. https://doi.org/10.1016/j.autrev.2012.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu Z, Wu G, Wei X, et al. Celastrol induced DNA damage, cell cycle arrest, and apoptosis in human rheumatoid fibroblast-like synovial cells[J]. Am J Chin Med. 2013;41(03):615–28. https://doi.org/10.1016/10.1142/S0192415X13500432.

    Article  CAS  PubMed  Google Scholar 

  8. Astry B, Venkatesha SH, Laurence A, et al. Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ[J]. Clin Immunol. 2015;157(2):228–38. https://doi.org/10.1016/j.clim.2015.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gan K, Xu L, Feng X, et al. Celastrol attenuates bone erosion in collagen-Induced arthritis mice and inhibits osteoclast differentiation and function in RANKL-induced RAW264.7[J]. Int Immunopharmacol. 2015;24(2):239–46. https://doi.org/10.1016/j.intimp.2014.12.012.

    Article  CAS  PubMed  Google Scholar 

  10. Achek A, Shah M, Seo JY, Kwon HK, Gui X, Shin HJ, Cho EY, Lee BS, Kim DJ, Lee SH, Yoo TH, Kim MS, Choi S. Linear and rationally designed stapled peptides abrogate TLR4 pathway and relieve inflammatory symptoms in rheumatoid arthritis rat model. J Med Chem. 2019;62:6495–511. https://doi.org/10.1021/acs.jmedchem.9b00061.

    Article  CAS  PubMed  Google Scholar 

  11. Wong VKW, Qiu C, Xu SW, et al. Ca2+ signalling plays a role in celastrol-mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats[J]. Br J Pharmacol. 2019;176(16):2922–44. https://doi.org/10.1111/bph.14718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao Q, Qin H, Zhu L, et al. Celastrol attenuates collagen-induced arthritis via inhibiting oxidative stress in rats[J]. Int Immunopharmacol. 2020;84:106527. https://doi.org/10.1016/j.intimp.2020.106527.

    Article  CAS  PubMed  Google Scholar 

  13. Winyard PG, Ryan B, Eggleton P, et al. Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease[J]. Biochem Soc Trans. 2011;39(5):1226–32. https://doi.org/10.1042/BST0391226.

    Article  CAS  PubMed  Google Scholar 

  14. Phull AR, Nasir B, ulHaq I, et al. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis[J]. Chem-Biol Interact. 2018;281:121–36. https://doi.org/10.1016/j.cbi.2017.12.024.

    Article  CAS  PubMed  Google Scholar 

  15. Khojah HM, Ahmed S, Abdel-Rahman MS, et al. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants[J]. Free Radical Biol Med. 2016;97:285–91. https://doi.org/10.1016/j.freeradbiomed.2016.06.020.

    Article  CAS  Google Scholar 

  16. Mateen S, Moin S, Shahzad S, et al. Level of inflammatory cytokines in rheumatoid arthritis patients: correlation with 25-hydroxy vitamin D and reactive oxygen species[J]. PLoS ONE. 2017;12(6):e0178879. https://doi.org/10.1371/journal.pone.0178879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smallwood MJ, Nissim A, Knight AR, et al. Oxidative stress in autoimmune rheumatic diseases[J]. Free Radical Biology and Medicine. 2018;125:3–14. https://doi.org/10.1016/j.freeradbiomed.2018.05.086.

    Article  CAS  PubMed  Google Scholar 

  18. Kim J, Kim HY, Song SY, et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment[J]. ACS Nano. 2019;13(3):3206–17. https://doi.org/10.1021/acsnano.8b08785.

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Guo L, Wang Z, et al. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization[J]. Biomaterials. 2021;264:120390. https://doi.org/10.1016/j.biomaterials.2020.120390.

    Article  CAS  PubMed  Google Scholar 

  20. Ni R, Song G, Fu X, et al. Reactive oxygen species-responsive dexamethasone-loaded nanoparticles for targeted treatment of rheumatoid arthritis via suppressing the iRhom2/TNF-α/BAFF signaling pathway[J]. Biomaterials. 2020;232:119730. https://doi.org/10.1016/j.biomaterials.2019.119730.

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Chen L, Xu X, et al. Targeted combination of antioxidative and anti-inflammatory therapy of rheumatoid arthritis using multifunctional dendrimer-entrapped gold nanoparticles as a platform[J]. Small. 2020;16(49):2005661. https://doi.org/10.1002/smll.202005661.

    Article  CAS  Google Scholar 

  22. Long Y, Lu Z, Mei L, et al. Enhanced melanoma-targeted therapy by “Fru-Blocked” phenyboronic acid-odified multiphase antimetastatic micellar nanoparticles[J]. Advanced Science. 2018;5(11):1800229. https://doi.org/10.1002/advs.201800229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Shi J. Antioxidative nanomaterials and biomedical applications[J]. Nano Today. 2019;27:146–77. https://doi.org/10.1016/j.nantod.2019.05.008.

    Article  CAS  Google Scholar 

  24. Stocker R, Yamamoto Y, McDonagh AF, et al. Bilirubin is an antioxidant of possible physiological importance[J]. Science. 1987;235(4792):1043–6. https://doi.org/10.1126/science.3029864.

    Article  CAS  PubMed  Google Scholar 

  25. Peng F, Deng X, Yang Y, et al. Serum bilirubin concentrations and multiple sclerosis[J]. J Clin Neurosci. 2011;18(10):1355–9. https://doi.org/10.1016/j.jocn.2011.02.023.

    Article  CAS  PubMed  Google Scholar 

  26. Horsfall LJ, Hardy R, Wong A, Kuh D, Swallow DM. Genetic variation underlying common hereditary hyperbilirubinaemia (Gilbert’s syndrome) and respiratory health in the 1946 British birth cohort. J Hepatol. 2014;61(6):1344e1351.

    Article  Google Scholar 

  27. de Vries HS, teMorsche RHM, Jenniskens K, Peters WHM, de Jong DJ. A functional polymorphism in UGT1A1 related to hyperbilirubinemia is associated with a decreased risk for Crohn’s disease. J Crohns Colitis. 2012;6(5):597e602.

    Article  Google Scholar 

  28. Keshavan P, Deem TL, Schwemberger SJ, Babcock GF, Cook-Mills JM, Zucker SD. Unconjugated bilirubin inhibits VCAM-1-mediated transendothelial leukocyte migration. J Immunol. 2005;174(6):3709e3718.

    Article  Google Scholar 

  29. Wang Q, Jiang J, Chen W, et al. Targeted delivery of low-dose dexamethasone using PCL–PEG micelles for effective treatment of rheumatoid arthritis[J]. J Control Release. 2016;230:64–72. https://doi.org/10.1016/j.jconrel.2016.03.035

  30. Yang Y, Guo L, Wang Z, et al. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization[J]. Biomaterials, 2021;264:120390. https://doi.org/10.1016/j.biomaterials.2020.120390

  31. Yeo J, Lee Y M, Lee J, et al. Nitric oxide-scavenging nanogel for treating rheumatoid arthritis[J]. Nano Lett. 2019;19(10):6716–24. https://doi.org/10.1021/acs.nanolett.9b00496.

  32.  Leech M, Metz C, Bucala R, et al. Regulation of macrophage migration inhibitory factor by endogenous glucocorticoids in rat adjuvant‐induced arthritis[J]. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2000;43(4):827–33. https://doi.org/10.1002/15290131(200004)43:4<827::AIDANR13>3.0.CO;2-K

  33.  Deakin AM, Payne AN, Whittle BJ, Moncada S. The modulation of IL-6 and TNF-α release by nitric oxide following stimulation of J774 cells with LPS and IFN-γ. Cytokine. 1995;7(5):408–16. https://doi.org/10.1006/cyto.1995.0056

  34. Makris AC, Sotzios Y, Zhou Z, Makropoulou M, Papapetropoulos N, Zacharatos P, Pyriochou A, Roussos C, Papapetropoulos A, Vassilakopoulos T. Nitric oxide stimulates interleukin-6 production in skeletal myotubes. J Interferon Cytokine Res. 2010;30(5):321–7. https://doi.org/10.1089/jir.2009.0022

  35. Choi Y, Arron JR, Townsend MJ. Promising bone-related therapeutic targets for rheumatoid arthritis[J]. Nat Rev Rheumatol. 2009;5(10):543–8. https://doi.org/10.1038/nrrheum.2009.175.

  36. Zhang Q, Dehaini D, Zhang Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis[J]. Nat Nanotechnol. 2018;13(12):1182–90. https://doi.org/10.1038/s41565-018-0254-4.

  37. Spagnolo P, Lee J S, Sverzellati N, et al. The lung in rheumatoid arthritis: focus on interstitial lung disease[J]. Arthritis Rheumatol. 2018;70(10):1544–54. https://doi.org/10.1002/art.40574.

  38. Turesson C, O’fallon WM, Crowson CS, et al. Extra-articular disease manifestations in rheumatoid arthritis: incidence trends and risk factors over 46 years[J]. Ann Rheum Dis. 2003;62(8):722–7. https://doi.org/10.1136/ard.62.8.722.

  39. Cortet B, Perez T, Roux N, et al. Pulmonary function tests and high resolution computed tomography of the lungs in patients with rheumatoid arthritis[J]. Ann Rheum Dis. 1997;56(10):596–600. https://doi.org/10.1136/ard.56.10.596

  40. Luo S, Li P, Li S, et al. N, N-dimethyl tertiary amino group mediated dual pancreas-and lung-targeting therapy against acute pancreatitis[J]. Mol Pharm. 2017;14(5):1771–81. https://doi.org/10.1021/acs.molpharmaceut.7b00028

  41. Cuong NV,  Hsieh MF,  Chen YT , et al. Synthesis and characterization of PEG-PCL-PEG triblock copolymers as carriers of doxorubicin for the treatment of breast cancer[J]. J Appl Polym Sci. 2010;117(6):3694–703. https://doi.org/10.1002/app.32266.

  42. Cuong NV,  Chen YT,  Hsieh MF. Doxorubicin- loaded micelles of Y-shaped PEG-(PCL)2 against drug-resistant breast cancer cells[J]. Biomed Eng Appl Basis Commun. 2013;25(05):1340009. https://doi.org/10.4015/S1016237213400097.

  43. Zhang J,  Wang LQ ,  Wang H, et al. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide).[J]. Biomacromolecules. 2006:7(9):2492–500. https://doi.org/10.1021/bm0601732.

  44. Xiaolan, Yang, Rongrong, et al. Design and synthesis of pH-sensitive polymeric micelles for oral delivery of poorly water-soluble drugs: Journal of Biomaterials Science, Polymer Edition: Vol 27, No 13[J]. J Biomater Sci Polym Ed. 2016. https://doi.org/10.1080/09205063.2016.1200248.

  45. Li H,  Niu Y. Synthesis and characterization of amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) for drug delivery[J]. Mater Sci Eng C. 2018;89(AUG.):160. https://doi.org/10.1016/j.msec.2018.04.002.

  46. Sedlak TW, Saleh M, Higginson DS, et al. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles[J]. Proc Natl Acad Sci. 2009;106(13):5171–6. https://doi.org/10.1073/pnas.0813132106.

  47. Irina A, Udalova A, Mantovani M, Feldmann. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol. 2016;2(8):472–85. https://doi.org/10.1038/nrrheum.2016.91.

  48. Yanqiong Z, Xia M, Weijie L, Wenjia C, Xiaoyue W, Zhaochen Ma, Na L. Med Res Rev. 2021;41(3):1337–374. https://doi.org/10.1002/med.21762.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81673363).

Author information

Authors and Affiliations

Authors

Contributions

Xuan Zhao: Substantial contributions to the conception or design of the work and the acquisition, analysis.

Chengyuan Huang: Drafting the work or revising it critically for important intellectual content.

Meiling Su: Acquisition of data for the work.

Yu Ran: Analysis of data for the work.

Ying Wang: Drafting the work or revising it critically for important intellectual content.

Zongning Yin: Final approval of the version to be published.

Corresponding author

Correspondence to Zongning Yin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to update the format of the title.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9764 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Huang, C., Su, M. et al. Reactive Oxygen Species–Responsive Celastrol-Loaded Bilirubin Nanoparticles for the Treatment of Rheumatoid Arthritis. AAPS J 24, 14 (2022). https://doi.org/10.1208/s12248-021-00636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00636-3

Keywords

Navigation