Skip to main content

Exosomes in Atherosclerosis, a Double-Edged Sword: Their Role in Disease Pathogenesis and Their Potential as Novel Therapeutics

Abstract

Cardiovascular disease (CAD) due to atherosclerosis is a major cause of death worldwide. The development of atherosclerosis involves intercellular communication facilitated by exosomes secreted from vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), immune cells, and platelets. In this review, we summarize the current understanding of exosome biogenesis and uptake, and discuss atherogenic and atheroprotective functions of exosomes secreted from these cell types. In addition, we examine the potential of enhancing the therapeutic and targeting ability of exosomes exhibiting atheroprotective function by drug loading and surface modification with targeting ligands. We conclude with current challenges associated with exosome engineering for therapeutic use.

This is a preview of subscription content, access via your institution.

Fig 1.
Fig 2.
Fig 3.
Fig 4.

References

  1. 1.

    Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 Update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    MC S. Arteriosclerosis/atherosclerosis. Mayo Clinic: Mayo Foundation for Medical Education and Research, rochester, MN; 1998-2015 1998-2015.

  4. 4.

    Bergheanu SC, Bodde MC, Jukema JW. Pathophysiology and treatment of atherosclerosis : current view and future perspective on lipoprotein modification treatment. Neth Hear J. 2017;25(4):231–42.

    CAS  Article  Google Scholar 

  5. 5.

    Singh RB, Mengi SA, Xu YJ, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: a multifactorial process. Exp Clin Cardiol. 2002;7(1):40–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Petsophonsakul P, Furmanik M, Forsythe R, Dweck M, Schurink GW, Natour E, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2019;39(7):1351–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Marx SO, Totary-Jain H, Marks AR. Vascular smooth muscle cell proliferation in restenosis. Circ Cardiovasc Interv. 2011;4(1):104–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Brophy ML, Dong Y, Wu H, Rahman HNA, Song K, Chen H. Eating the dead to keep atherosclerosis at bay. Frontiers in Cardiovascular Medicine. 2017;4:2.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Niessner A, Sato K, Chaikof EL, Colmegna I, Goronzy JJ, Weyand CM. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation. 2006;114(23):2482–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24(7):1161–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276(6):618–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Moore Kathryn J, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Baruah J, Wary KK. Exosomes in the regulation of vascular endothelial cell regeneration. Front Cell Dev Biol. 2019;7:353.

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Chen Y-T, Yuan H-X, Ou Z-J, Ou J-S. Microparticles (exosomes) and atherosclerosis. Curr Atheroscler Rep. 2020;22(6):23.

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Kapustin AN, Shanahan CM. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol. 2016;594(11):2905–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7).

  19. 19.

    Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 2014;1846(1):75–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Edelstein LR, Smythies JR, Quesenberry PJ, D. N. Exosomes: a clinical compendium. Amsterdam: Academic Press, an imprint of Elsevier; 2020 2020.

  21. 21.

    Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest. 2016;126(4):1198–207.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Bouchareychas L, Duong P, Covarrubias S, Alsop E, Phu TA, Chung A, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA Cargo. Cell Rep. 2020;32(2):107881.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Bellin G, Gardin C, Ferroni L, Chachques JC, Rogante M, Mitrečić D, et al. Exosome in cardiovascular diseases: a complex world full of hope. Cells. 2019;8(2).

  24. 24.

    Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc Med. 2019;29(6):313–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013;128(18):2026–38.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Hutcheson JD, Aikawa E. Extracellular vesicles in cardiovascular homeostasis and disease. Curr Opin Cardiol. 2018;33(3):290–7.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Jansen F, Stumpf T, Proebsting S, Franklin BS, Wenzel D, Pfeifer P, et al. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. J Mol Cell Cardiol. 2017;104:43–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Stamatikos A, Knight E, Vojtech L, Bi L, Wacker BK, Tang C, et al. Exosome-mediated transfer of Anti-miR-33a-5p from transduced endothelial cells enhances macrophage and vascular smooth muscle cell cholesterol efflux. Hum Gene Ther. 2020;31(3-4):219–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015;219:396–405.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Conlan RS, Pisano S, Oliveira MI, Ferrari M, Mendes PI. Exosomes as reconfigurable therapeutic systems. Trends Mol Med. 2017;23(7):636–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep. 2015;5:17543.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    van der Meel R, Fens MH, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release. 2014;195:72–85.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  34. 34.

    Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478).

  35. 35.

    Buratta S, Tancini B, Sagini K, Delo F, Chiaradia E, Urbanelli L, et al. Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic- and endo-lysosomal systems go extracellular. Int J Mol Sci. 2020;21(7).

  36. 36.

    Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  38. 38.

    Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol. 2018;74:66–77.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Williams RL, Urbé S. The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol. 2007;8(5):355–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3.

  43. 43.

    Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer. 2011;11:108.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Herskovits JS, Burgess CC, Obar RA, Vallee RB. Effects of mutant rat dynamin on endocytosis. J Cell Biol. 1993;122(3):565–78.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol. 2013;87(18):10334–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 2010;11(5):675–87.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Takafuji Y, Hori M, Mizuno T, Harada-Shiba M. Humoral factors secreted from adipose tissue-derived mesenchymal stem cells ameliorate atherosclerosis in Ldlr-/- mice. Cardiovasc Res. 2019;115(6):1041–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Wang S, Tong M, Hu S, Chen X. The bioactive substance secreted by MSC retards mouse aortic vascular smooth muscle cells calcification. Biomed Res Int. 2018;2018:6053567.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell Mol Med. 2016;20(12):2318–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Niu C, Wang X, Zhao M, Cai T, Liu P, Li J, et al. Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. J Am Heart Assoc. 2016;5(10).

  53. 53.

    Tang N, Sun B, Gupta A, Rempel H, Pulliam L. Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-κB in endothelial cells. FASEB J. 2016;30(9):3097–106.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 2015;29(9):3595–611.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Virtue A, Johnson C, Lopez-Pastraña J, Shao Y, Fu H, Li X, et al. MicroRNA-155 deficiency leads to decreased atherosclerosis, increased white adipose tissue obesity, and non-alcoholic fatty liver disease: a novel mouse model of obesity PARADOX. J Biol Chem. 2017;292(4):1267–87.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Bruen R, Fitzsimons S, Belton O. miR-155 in the resolution of atherosclerosis. Front Pharmacol. 2019;10:463.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Pasca S, Jurj A, Petrushev B, Tomuleasa C, Matei D. MicroRNA-155 implication in M1 polarization and the impact in inflammatory diseases. Front Immunol. 2020;11:625.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Zhan R, Leng X, Liu X, Wang X, Gong J, Yan L, et al. Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochem Biophys Res Commun. 2009;387(2):229–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Kapustin AN, Chatrou ML, Drozdov I, Zheng Y, Davidson SM, Soong D, et al. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ Res. 2015;116(8):1312–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Zheng B, Yin WN, Suzuki T, Zhang XH, Zhang Y, Song LL, et al. Exosome-Mediated miR-155 Transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther. 2017;25(6):1279–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis. 2001;158(2):277–87.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Pan Y, Liang H, Liu H, Li D, Chen X, Li L, et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol. 2014;192(1):437–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol. 2005;25(7):1512–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Wang C, Zhang C, Liu L. A X, Chen B, Li Y, et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Molecular therapy : the journal of the American Society of Gene Therapy. 2017;25(1):192–204.

    CAS  Article  Google Scholar 

  65. 65.

    Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6:7321.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Bäck M, Yurdagul A Jr, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16(7):389–406.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Tung SL, Boardman DA, Sen M, Letizia M, Peng Q, Cianci N, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 2018;8(1):6065.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997;386(6620):78–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Jahnen-Dechent W, Heiss A, Schäfer C, Ketteler M. Fetuin-A regulation of calcified matrix metabolism. Circ Res. 2011;108(12):1494–509.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, et al. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol. 2005;16(10):2920–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, et al. MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res. 2015;117(10):870–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012;126(11 Suppl 1):S81–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Yao Y, Sun W, Sun Q, Jing B, Liu S, Liu X, et al. Platelet-derived exosomal MicroRNA-25-3p inhibits coronary vascular endothelial cell inflammation through Adam10 via the NF-κB signaling pathway in ApoE(-/-) mice. Front Immunol. 2019;10:2205.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Li J, Xue H, Li T, Chu X, Xin D, Xiong Y, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE−/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun. 2019;510(4):565–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Guo Z, Zhao Z, Yang C, Song C. Transfer of microRNA-221 from mesenchymal stem cell-derived extracellular vesicles inhibits atherosclerotic plaque formation. Transl Res. 2020;226:83–95.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Smyth LA, Boardman DA, Tung SL, Lechler R, Lombardi G. MicroRNAs affect dendritic cell function and phenotype. Immunology. 2015;144(2):197–205.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17(1):52–63.

    PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Sathanoori R, Rosi F, Gu BJ, Wiley JS, Müller CE, Olde B, et al. Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signal. 2015;11(1):139–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    He S, Wu C, Xiao J, Li D, Sun Z, Li M. Endothelial extracellular vesicles modulate the macrophage phenotype: potential implications in atherosclerosis. Scand J Immunol. 2018;87(4):e12648.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol. 2002;22(10):1547–59.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Zininga T, Ramatsui L, Shonhai A. Heat shock proteins as immunomodulants. Molecules. 2018;23(11):2846.

    PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Hutcheson JD, Goettsch C, Bertazzo S, Maldonado N, Ruiz JL, Goh W, et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016;15(3):335–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT, Sidibe A, et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res. 2011;109(1):e1–12.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care. 2012;1(1):60–74.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Li J, Tan M, Xiang Q, Zhou Z, Yan H. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb Res. 2017;154:96–105.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng. 2010;12:87–117.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Sargent A, Miller RH. MSC therapeutics in chronic inflammation. Curr Stem Cell Rep. 2016;2(2):168–73.

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14(8):493–507.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Yao J, Zheng J, Cai J, Zeng K, Zhou C, Zhang J, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response. FASEB J. 2019;33(2):1695–710.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Jafari D, Shajari S, Jafari R, Mardi N, Gomari H, Ganji F, et al. Designer exosomes: a new platform for biotechnology therapeutics. BioDrugs. 2020;34(5):567–86.

    PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Naseri Z, Oskuee RK, Forouzandeh-Moghadam M, Jaafari MR. Delivery of LNA-antimiR-142-3p by mesenchymal stem cells-derived exosomes to breast cancer stem cells reduces tumorigenicity. Stem Cell Rev Rep. 2020;16(3):541–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Patil SM, Sawant SS, Kunda NK. Exosomes as drug delivery systems: a brief overview and progress update. Eur J Pharm Biopharm. 2020;154:259–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–96.

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38(6):754–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, et al. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 2019;9(26):8001–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, et al. Engineered extracellular vesicles for cancer therapy. Adv Mater. 2021;33(14):2005709.

    CAS  Article  Google Scholar 

  99. 99.

    Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics. 2021;11(7):3183–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Gong C, Tian J, Wang Z, Gao Y, Wu X, Ding X, et al. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology. 2019;17(1):93.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. 101.

    Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220(Pt B):727–37.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8:122.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. 103.

    Kotnik T, Kramar P, Pucihar G, Miklavcic D, Tarek M. Cell membrane electroporation- Part 1: the phenomenon. IEEE Electr Insul Mag. 2012;28(5):14–23.

    Article  Google Scholar 

  104. 104.

    Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12(3):655–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Wu G, Zhang J, Zhao Q, Zhuang W, Ding J, Zhang C, et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew Chem Int Ed Eng. 2020;59(10):4068–74.

    CAS  Article  Google Scholar 

  107. 107.

    Johnsen KB, Gudbergsson JM, Skov MN, Christiansen G, Gurevich L, Moos T, et al. Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. Cytotechnology. 2016;68(5):2125–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Wang J, Lee CJ, Deci MB, Jasiewicz N, Verma A, Canty JM, et al. MiR-101a loaded extracellular nanovesicles as bioactive carriers for cardiac repair. Nanomedicine. 2020;27:102201.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Kooijmans SAA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJA, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. 2013;172(1):229–38.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Pomatto MAC, Bussolati B, D’Antico S, Ghiotto S, Tetta C, Brizzi MF, et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Molecular Therapy - Methods & Clinical Development. 2019;13:133–44.

    CAS  Article  Google Scholar 

  111. 111.

    Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm. 2015;12(10):3650–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Luo Q, Guo D, Liu G, Chen G, Hang M, Jin M. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol Biochem. 2017;44(6):2105–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Hao XZ, Fan HM. Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. Eur Rev Med Pharmacol Sci. 2017;21(11):2725–33.

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105(5):1516–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P, Schiffelers RM. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles. 2016;5:31053.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  116. 116.

    Ran N, Gao X, Dong X, Li J, Lin C, Geng M, et al. Effects of exosome-mediated delivery of myostatin propeptide on functional recovery of mdx mice. Biomaterials. 2020;236:119826.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Vrijsen KR, Maring JA, Chamuleau SA, Verhage V, Mol EA, Deddens JC, et al. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater. 2016;5(19):2555–65.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Gallego-Perez D, Pal D, Ghatak S, Malkoc V, Higuita-Castro N, Gnyawali S, et al. Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nat Nanotechnol. 2017;12(10):974–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020;4(1):69–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics. 2018;10(4):218.

    CAS  PubMed Central  Article  Google Scholar 

  122. 122.

    Sukreet S, Silva BVRE, Adamec J, Cui J, Zempleni J. Sonication and short-term incubation alter the content of bovine milk exosome cargos and exosome bioavailability (OR26-08-19). Current Developments in Nutrition. 2019;3(Supplement_1).

  123. 123.

    Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (London, England). 2016;11(6):673–92.

    CAS  Article  Google Scholar 

  124. 124.

    Zhang Z, Dombroski JA, King MR. Engineering of exosomes to target cancer metastasis. Cell Mol Bioeng. 2020;13(1):1–16.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  125. 125.

    Hood JL. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (London). 2016;11(13):1745–56.

    CAS  Article  Google Scholar 

  126. 126.

    Li Z, Zhou X, Gao X, Bai D, Dong Y, Sun W, et al. Fusion protein engineered exosomes for targeted degradation of specific RNAs in lysosomes: a proof-of-concept study. Journal of Extracellular Vesicles. 2020;9(1):1816710.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: current progress in cargo loading and targeted delivery. NanoImpact. 2020;20:100261.

    Article  Google Scholar 

  128. 128.

    El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 2012;7(12):2112–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids. 2017;7:278–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Hung ME, Leonard JN. Stabilization of exosome-targeting peptides via engineered glycosylation. J Biol Chem. 2015;290(13):8166–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Chung EJ. Targeting and therapeutic peptides in nanomedicine for atherosclerosis. Exp Biol Med (Maywood). 2016;241(9):891–8.

    CAS  Article  Google Scholar 

  132. 132.

    Jiang F, Zhu Y, Gong C, Wei X. Atherosclerosis and nanomedicine potential: current advances and future opportunities. Curr Med Chem. 2020;27(21):3534–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Liu X, Yang X, Sun W, Wu Q, Song Y, Yuan L, et al. Systematic evolution of ligands by exosome enrichment: a proof-of-concept study for exosome-based targeting peptide screening. Adv Biosyst. 2019;3(2):e1800275.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  134. 134.

    Mentkowski KI, Lang JK. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo. Sci Rep. 2019;9(1):10041.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. 135.

    Vaidyanathan K, Gopalakrishnan S. Nanomedicine in the diagnosis and treatment of atherosclerosis-a systematic review. Cardiovasc Hematol Disord Drug Targets. 2017;17(2):119–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Zia A, Wu Y, Nguyen T, Wang X, Peter K, Ta HT. The choice of targets and ligands for site-specific delivery of nanomedicine to atherosclerosis. Cardiovasc Res. 2020;116(13):2055–68.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics. 2019;9(4):1015–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner MW, et al. Surface functionalization of exosomes using click chemistry. Bioconjug Chem. 2014;25(10):1777–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Song S, Shim MK, Lim S, Moon Y, Yang S, Kim J, et al. In situ one-step fluorescence labeling strategy of exosomes via bioorthogonal click chemistry for real-time exosome tracking in vitro and in vivo. Bioconjug Chem. 2020;31(5):1562–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Wang M, Altinoglu S, Takeda YS, Xu Q. Integrating protein engineering and bioorthogonal click conjugation for extracellular vesicle modulation and intracellular delivery. PLoS One. 2015;10(11):e0141860.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  141. 141.

    Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine. 2018;14(1):195–204.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Cao Y, Wu T, Zhang K, Meng X, Dai W, Wang D, et al. Engineered exosome-mediated near-infrared-ii region V(2)C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano. 2019;13(2):1499–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Poon C, Gallo J, Joo J, Chang T, Bañobre-López M, Chung EJ. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. Journal of Nanobiotechnology. 2018;16(1):92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Chin DD, Poon C, Trac N, Wang J, Cook J, Joo J, et al. Collagenase-cleavable peptide amphiphile micelles as a novel theranostic strategy in atherosclerosis. Advanced Therapeutics. 2020;3(3):1900196.

    PubMed Central  Article  Google Scholar 

  145. 145.

    Chin DD, Wang J. Mel de Fontenay M, Plotkin A, Magee GA, Chung EJ. Hydroxyapatite-binding micelles for the detection of vascular calcification in atherosclerosis. J Mater Chem B. 2019;7(41):6449–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol. 2018;9:738.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. 147.

    Willms E, Johansson HJ, Mäger I, Lee Y, Blomberg KE, Sadik M, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016;6:22519.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.

    PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Li J, Lee Y, Johansson HJ, Mäger I, Vader P, Nordin JZ, et al. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. Journal of extracellular vesicles. 2015;4:26883.

    PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Thippabhotla S, Zhong C, He M. 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep. 2019;9(1):13012.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. 151.

    Rocha S, Carvalho J, Oliveira P, Voglstaetter M, Schvartz D, Thomsen AR, et al. 3D cellular architecture affects microRNA and protein cargo of extracellular vesicles. Advanced Science. 2019;6(4):1800948.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  152. 152.

    Sahoo S, Adamiak M, Mathiyalagan P, Kenneweg F, Kafert-Kasting S, Thum T. Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases. Circulation. 2021;143(14):1426–49.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Reiner AT, Witwer KW, van Balkom BWM, de Beer J, Brodie C, Corteling RL, et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 2017;6(8):1730–9.

    PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Ayers L, Pink R, Carter DRF, Nieuwland R. Clinical requirements for extracellular vesicle assays. Journal of extracellular vesicles. 2019;8(1):1593755.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. Journal of extracellular vesicles. 2015;4:30087.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  156. 156.

    Emam SE, Ando H, Abu Lila AS, Shimizu T, Ukawa M, Okuhira K, et al. A novel strategy to increase the yield of exosomes (extracellular vesicles) for an expansion of basic research. Biol Pharm Bull. 2018;41(5):733–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Ludwig N, Yerneni SS, Menshikova EV, Gillespie DG, Jackson EK, Whiteside TL. Simultaneous inhibition of glycolysis and oxidative phosphorylation triggers a multi-fold increase in secretion of exosomes: possible role of 2'3'-cAMP. Sci Rep. 2020;10(1):6948.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Wang J, Bonacquisti EE, Brown AD, Nguyen J. Boosting the biogenesis and secretion of mesenchymal stem cell-derived exosomes. Cells. 2020;9(3).

  159. 159.

    Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics. 2018;10(4).

  160. 160.

    Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology. 2018;16(1):81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Lee BC, Kang I, Yu KR. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-derived exosomes. J Clin Med. 2021;10(4).

  162. 162.

    Chen Y-S, Lin E-Y, Chiou T-W, Harn H-J. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi. 2019;32(2):113–20.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from the National Science Foundation Graduate Student Fellowship awarded to N. J. P., and Women in Science and Engineering (WiSE) and NIH New Innovator Award (DP2-DK121328) to E. J. C.

Author information

Affiliations

Authors

Contributions

The manuscript was written through contribution of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Eun Ji Chung.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Aliasger Salem, Juliane Nguyen and Kristy Ainslie

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, N., Chin, D.D. & Chung, E.J. Exosomes in Atherosclerosis, a Double-Edged Sword: Their Role in Disease Pathogenesis and Their Potential as Novel Therapeutics. AAPS J 23, 95 (2021). https://doi.org/10.1208/s12248-021-00621-w

Download citation

KEY WORDS

  • atherosclerosis
  • drug delivery
  • engineered exosomes
  • extracellular vesicles
  • nanoparticle