Skip to main content

Advertisement

Log in

A Systematic Review of the Efforts and Hindrances of Modeling and Simulation of CAR T-cell Therapy

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor (CAR) T-cell therapy is an immunotherapy that has recently become highly instrumental in the fight against life-threatening diseases. A variety of modeling and computational simulation efforts have addressed different aspects of CAR T-cell therapy, including T-cell activation, T- and malignant cell population dynamics, therapeutic cost-effectiveness strategies, and patient survival. In this article, we present a systematic review of those efforts, including mathematical, statistical, and stochastic models employing a wide range of algorithms, from differential equations to machine learning. To the best of our knowledge, this is the first review of all such models studying CAR T-cell therapy. In this review, we provide a detailed summary of the strengths, limitations, methodology, data used, and data gap in currently published models. This information may help in designing and building better models for enhanced prediction and assessment of the benefit-risk balance associated with novel CAR T-cell therapies, as well as with the data need for building such models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Novartis Pharmaceuticals Corporation. Kymriah™ (tisagenlecleucel) [Package Insert]. East Hanover, NJ. 2018.

  3. Kite Pharma Inc. Yescarta® (axicabtagene ciloleucel) [Package Insert]. Santa Monica, CA. 2017.

  4. Newick K, O'Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.

    Article  CAS  PubMed  Google Scholar 

  5. Seif M, Einsele H, Loeffler J. CAR T Cells beyond cancer: hope for immunomodulatory therapy of infectious diseases. Front Immunol. 2019;10:2711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hernandez-Vargas EA. Modeling and control of infectious diseases in the Host. 1 ed. 1, 2019. 256 p.

  7. Tomlin CJ, Axelrod JD. Biology by numbers: mathematical modelling in developmental biology. Nat Rev Genet. 2007;8(5):331–40.

    Article  CAS  PubMed  Google Scholar 

  8. Bansal A, Sullivan SD, Lin VW, Purdum AG, Navale L, Cheng P, et al. Estimating long-term survival for patients with relapsed or refractory large B-cell lymphoma treated with chimeric antigen receptor therapy: a comparison of standard and mixture cure models. Med Decis Mak. 2019;39(3):294–8.

    Article  Google Scholar 

  9. Finney OC, Brakke HM, Rawlings-Rhea S, Hicks R, Doolittle D, Lopez M, et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J Clin Invest. 2019;129(5):2123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  10. George JT, Levine H. Stochastic modeling of tumor progression and immune evasion. J Theor Biol. 2018;458:148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanson S. Mathematical modelling of immuno-oncology and related immunology. Duke University; 2019.

  12. Whittington MD, McQueen RB, Ollendorf DA, Kumar VM, Chapman RH, Tice JA, et al. Long-term survival and value of chimeric antigen receptor T-cell therapy for pediatric patients with relapsed or refractory leukemia. JAMA Pediatr. 2018;172(12):1161–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. de Jesus Rodrigues B, Barros LRC, Almeida RC. Three-compartment model of CAR T-cell immunotherapy. bioRxiv. 2019;779793.

  14. Hopkins B, Pan Y, Tucker M, Huang ZJ. A model-based investigation of cytokine dynamics in immunotherapies. Processes. 2019;7(1):12.

    Article  CAS  Google Scholar 

  15. Kimmel GJ, Locke FL, Altrock PM. Evolutionary dynamics of CAR T cell therapy. bioRxiv. 2019;717074.

  16. Mostolizadeh R, Afsharnezhad Z, Marciniak-Czochra A. Mathematical model of chimeric anti-gene receptor (CAR) T cell therapy with presence of cytokine. Numer Algebra Control Optim. 2018;8(1):63.

    Article  Google Scholar 

  17. Talkington A, Dantoin C, Durrett R. Ordinary differential equation models for adoptive immunotherapy. Bull Math Biol. 2018;80(5):1059–83.

    Article  PubMed  Google Scholar 

  18. Hanson S, Grimes DR, Taylor-King JP, Bauer B, Warman PI, Frankenstein Z, et al. Toxicity management in CAR T cell therapy for B-ALL: mathematical modelling as a new avenue for improvement. BioRxiv. 2016:049908.

  19. Sahoo P, Yang X, Abler D, Maestrini D, Adhikarla V, Frankhouser D, et al. Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data. J R Soc Interface. 2020;17(162).

  20. Schacht C, Meade A, Banks HT, Enderling H, Abate-Daga D. Estimation of probability distributions of parameters using aggregate population data: analysis of a CAR T-cell cancer model. Math Biosci Eng. 2019;16(6):7299–326.

    Article  PubMed  Google Scholar 

  21. Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toor AA, Chesney A, Zweit J, Reed J, Hashmi SK. A dynamical systems perspective on chimeric antigen receptor T-cell dosing. Bone Marrow Transplant. 2019;54(3):485–9.

    Article  CAS  PubMed  Google Scholar 

  23. Madabushi R, Benjamin JM, Grewal R, Pacanowski MA, Strauss DG, Wang Y, et al. The US Food and Drug Administration’s model-informed drug development paired meeting pilot program: early experience and impact. Clin Pharmacol Ther. 2019;106(1):74–8.

    Article  PubMed  Google Scholar 

  24. Unni P, Seshaiyer P. Mathematical modeling, analysis, and simulation of tumor dynamics with drug interventions. Comput Math Methods Med. 2019;2019:4079298.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Makaryan SZ, Cess CG, Finley SD. Modeling immune cell behavior across scales in cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2020:e1484.

  26. Rohrs JA, Wang P, Finley SD. Understanding the dynamics of T-cell activation in health and disease through the lens of computational modeling. JCO Clin Cancer Inform. 2019;3:1–8.

    Article  PubMed  Google Scholar 

  27. Chaudhury A, Zhu X, Chu L, Goliaei A, June CH, Kearns JD, et al. Chimeric antigen receptor T cell therapies: a review of cellular kinetic-pharmacodynamic modeling approaches. J Clin Pharmacol. 2020;60:S147–S59.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao Z, Condomines M, van der Stegen SJC, Perna F, Kloss CC, Gunset G, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28(4):415–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harris DT, Hager MV, Smith SN, Cai Q, Stone JD, Kruger P, et al. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J Immunol. 2018;200(3):1088–100.

    Article  CAS  PubMed  Google Scholar 

  30. Kersh EN, Shaw AS, Allen PM. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science. 1998;281(5376):572–5.

    Article  CAS  PubMed  Google Scholar 

  31. Housden HR, Skipp PJ, Crump MP, Broadbridge RJ, Crabbe T, Perry MJ, et al. Investigation of the kinetics and order of tyrosine phosphorylation in the T-cell receptor ζ chain by the protein tyrosine kinase Lck. Eur J Biochem. 2003;270(11):2369–76.

    Article  CAS  PubMed  Google Scholar 

  32. Mukhopadhyay H, Cordoba S-P, Maini PK, van der Merwe PA, Dushek O. Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput Biol. 2013;9(3):e1003004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mukhopadhyay H, de Wet B, Clemens L, Maini PK, Allard J, van der Merwe PA, et al. Multisite phosphorylation modulates the T cell receptor ζ-chain potency but not the switchlike response. Biophys J. 2016;110(8):1896–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rohrs JA, Zheng D, Graham NA, Wang P, Finley SD. Computational model of chimeric antigen receptors explains site-specific phosphorylation kinetics. Biophys J. 2018;115(6):1116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rohrs JA, Siegler EL, Wang P, Finley SD. ERK activation in CAR T cells is amplified by CD28-mediated increase in CD3ζ phosphorylation. iScience. 2020;23(4):101023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cess CG, Finley SD. Data-driven analysis of a mechanistic model of CAR T cell signaling predicts effects of cell-to-cell heterogeneity. J Theor Biol. 2020;489:110125.

    Article  CAS  PubMed  Google Scholar 

  37. Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Opsata M, et al. The European medicines agency review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Oncologist 2020;25(2):\.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cao J-X, Gao W-J, You J, Wu L-H, Liu J-L, Wang Z-X. The efficacy of anti-CD19 chimeric antigen receptor T cells for B-cell malignancies. Cytotherapy. 2019;21(7):769–81.

    Article  CAS  PubMed  Google Scholar 

  39. Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G, et al. Tumor indoleamine 2, 3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood J Am Soc Hematol. 2015;125(25):3905–16.

    CAS  Google Scholar 

  40. Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A, Kraft DO, et al. Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov. 2017;7(10):1154–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh AP, Zheng X, Lin-Schmidt X, Chen W, Carpenter TJ, Zong A, et al. Development of a quantitative relationship between CAR-affinity, antigen abundance, tumor cell depletion and CAR-T cell expansion using a multiscale systems PK-PD model. MAbs. 2020;12(1):1688616.

    Article  PubMed  Google Scholar 

  42. Awasthi R, Pacaud L, Waldron E, Tam CS, Jager U, Borchmann P, et al. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv. 2020;4(3):560–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stein AM, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, Boyer MW, et al. Tisagenlecleucel model-based cellular kinetic analysis of chimeric antigen receptor-T cells. CPT Pharmacometrics Syst Pharmacol. 2019;8(5):285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hardiansyah D, Ng CM. Quantitative systems pharmacology model of chimeric antigen receptor T-cell therapy. Clin Transl Sci. 2019;12(4):343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mueller KT, Maude SL, Porter DL, Frey N, Wood P, Han X, et al. Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood. 2017;130(21):2317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mueller KT, Waldron E, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, et al. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clin Cancer Res. 2018;24(24):6175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu C, Ayyar VS, Zheng X, Chen W, Zheng S, Mody H, et al. Model-based cellular kinetic analysis of chimeric antigen receptor-t cells in humans. Clin Pharmacol Ther. 2020.

  49. De Boer RJ, Homann D, Perelson AS. Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J Immunol. 2003;171(8):3928–35.

    Article  PubMed  Google Scholar 

  50. Grant TS, Burns D, Kiff C, Lee D. A case study examining the usefulness of cure modelling for the prediction of survival based on data maturity. Pharmacoeconomics. 2019. https://doi.org/10.1007/s40273-019-00867-5.

  51. Lin JK, Lerman BJ, Barnes JI, Boursiquot BC, Tan YJ, Robinson AQL, et al. Cost effectiveness of chimeric antigen receptor T-cell therapy in relapsed or refractory pediatric B-cell acute lymphoblastic leukemia. J Clin Oncol. 2018:JCO2018790642.

  52. Furzer J, Gupta S, Nathan PC, Schechter T, Pole JD, Krueger J, et al. Cost-effectiveness of tisagenlecleucel vs standard care in high-risk relapsed pediatric acute lymphoblastic leukemia in Canada. JAMA Oncol. 2020:e195909.

  53. Sarkar RR, Gloude NJ, Schiff D, Murphy JD. Cost-effectiveness of chimeric antigen receptor T-cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. J Natl Cancer Inst. 2019;111(7):719–26.

    Article  PubMed  Google Scholar 

  54. Whittington MD, McQueen RB, Ollendorf DA, Kumar VM, Chapman RH, Tice JA, et al. Long-term survival and cost-effectiveness associated with axicabtagene ciloleucel vs chemotherapy for treatment of B-cell lymphoma. JAMA Netw Open. 2019;2(2):e190035.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Roth JA, Sullivan SD, Lin VW, Bansal A, Purdum AG, Navale L, et al. Cost-effectiveness of axicabtagene ciloleucel for adult patients with relapsed or refractory large B-cell lymphoma in the United States. J Med Econ. 2018;21(12):1238–45.

    Article  PubMed  Google Scholar 

  56. Banwarth-Kuhn M, Sindi S. How and why to build a mathematical model: a case study using prion aggregation. J Biol Chem. 2020;295(15):5022–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chelliah V, Lazarou G, Bhatnagar S, Gibbs JP, Nijsen M, Ray A, et al. Quantitative systems pharmacology approaches for immuno-oncology: adding virtual patients to the development paradigm. Clin Pharmacol Ther. 2020.

  58. Polak S, Tylutki Z, Holbrook M, Wiśniowska B. Better prediction of the local concentration–effect relationship: the role of physiologically based pharmacokinetics and quantitative systems pharmacology and toxicology in the evolution of model-informed drug discovery and development. Drug Discov Today. 2019;24(7):1344–54.

    Article  CAS  PubMed  Google Scholar 

  59. Marshall S, Burghaus R, Cosson V, Cheung S, Chenel M, DellaPasqua O, et al. Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuemmel C, Yang Y, Zhang X, Florian J, Zhu H, Tegenge M, et al. Consideration of a credibility assessment framework in model-informed drug development: potential application to physiologically-based pharmacokinetic modeling and simulation. CPT Pharmacometrics Syst Pharmacol. 2020;9(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  61. Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Turtle CJ, Hanafi L-A, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor–modified T cells. Sci Transl Med. 2016;8(355):355ra116.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Neelapu SS. CAR-T efficacy: is conditioning the key? Blood. J Am Soc Hematol. 2019;133(17):1799–800.

    CAS  Google Scholar 

  64. Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130(21):2295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gorovits B, Koren E. Immunogenicity of Chimeric antigen receptor T-cell therapeutics. J BioDrugs. 2019:1–10.

  66. Xia A-L, Wang X-C, Lu Y-J, Lu X-J, Sun B. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget. 2017;8(52):90521–31.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Date V, Nair S. Emerging vistas in CAR T-cell therapy: challenges and opportunities in solid tumors. Expert Opin Biol Ther. 2020:1–16.

  68. Ramakrishna S, Barsan V, Mackall C. Prospects and challenges for use of CAR T cell therapies in solid tumors. Expert Opin Biol Ther. 2020;20(5):503–16.

    Article  CAS  PubMed  Google Scholar 

  69. Bagley SJ, O’Rourke DM. Clinical investigation of CAR T cells for solid tumors: lessons learned and future directions. Pharmacol Ther. 2020;205:107419.

    Article  CAS  PubMed  Google Scholar 

  70. Castellarin M, Sands C, Da T, Scholler J, Graham K, Buza E, et al. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight. 2020;5(14).

  71. Gardner RA, Ceppi F, Rivers J, Annesley C, Summers C, Taraseviciute A, et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood. 2019;134(24):2149–58.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kadauke S, Myers RM, Li Y, Aplenc R, Baniewicz D, Barrett DM, et al. Risk-adapted preemptive tocilizumab to prevent severe cytokine release syndrome after CTL019 for pediatric b-cell acute lymphoblastic leukemia: a prospective clinical trial. J Clin Oncol. JCO.20.02477.

  73. Si S, Teachey DT. Spotlight on tocilizumab in the treatment of CAR-T-cell-induced cytokine release syndrome: clinical evidence to date. Ther Clin Risk Manag. 2020;16:705.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019;25(9):1341–55.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang J, Li J, Ma Q, Yang H, Signorovitch J, Wu E. A review of two regulatory approved anti-CD19 CAR T-cell therapies in diffuse large B-cell lymphoma: why are indirect treatment comparisons not feasible? Adv Ther. 2020;37(7):3040–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Locke FL, Rossi JM, Neelapu SS, Jacobson CA, Miklos DB, Ghobadi A, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4(19):4898–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Milone MC, Bhoj VG. The pharmacology of T cell therapies. Mol Ther Methods Clin Dev. 2018;8:210–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Valentinuzzi D, Jeraj R. Computational modelling of modern cancer immunotherapy. Phys Med Biol. 2020;65:24TR01.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Gwendolyn Halford, FDA Library, for curating the literature search queries. We would like to thank Joanne Berger and Daniel Sloper, FDA Library, for editing the manuscript.

Funding

This project was supported in part by an appointment to the Research Participation Program at OBE/CBER, U.S. Food and Drug Administration, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the FDA.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: UN, MRM, ONY, HY

Data curation: UN, ONY

Formal analysis: UN, MRM, ONY, XW

Funding acquisition: HY

Investigation: UN, MRM, ONY, XW

Methodology: UN, ONY

Project administration: ONY, HY

Resources: HY

Supervision: HY

Visualization: UN, MRM

Writing—original draft: UN, MRM, ONY, XW, HY

Writing—review and editing: UN, MRM, ONY, XW, HY

Corresponding author

Correspondence to Hong Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Disclaimer

This article reflects the views of the authors and should not be construed to represent the FDA’s views or policies. These comments do not bind or obligate FDA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nukala, U., Rodriguez Messan, M., Yogurtcu, O.N. et al. A Systematic Review of the Efforts and Hindrances of Modeling and Simulation of CAR T-cell Therapy. AAPS J 23, 52 (2021). https://doi.org/10.1208/s12248-021-00579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00579-9

KEY WORDS

Navigation