Construction and Verification of Physiologically Based Pharmacokinetic Models for Four Drugs Majorly Cleared by Glucuronidation: Lorazepam, Oxazepam, Naloxone, and Zidovudine

Abstract

Physiologically based pharmacokinetic (PBPK) modeling is less well established for substrates of UDP-glucuronosyltransferases (UGT) than for cytochrome P450 (CYP) metabolized drugs and more verification of simulations is necessary to increase confidence. To address specific challenges of UGT substrates, we developed PBPK models for four drugs cleared majorly via glucuronidation (lorazepam, oxazepam, naloxone, and zidovudine). In vitro to in vivo scaling of intrinsic clearance generated with co-cultured human hepatocytes was applied for hepatic metabolism and extra-hepatic clearance was extrapolated based on relative expression of UGT isoforms in the liver, kidney, and intestine. Non-metabolic clearance and the contributions of individual UGT isoforms to glucuronidation were based on in vitro and in vivo studies taken from the literature and simulations were verified and evaluated with a broad set of clinical pharmacokinetic data. Model evaluation showed systemic clearance predictions within 1.5-fold for all drugs and all simulated parameters were within 2-fold of observed. However, during the verification step, top-down model fitting was necessary to adjust for under-prediction of zidovudine VSS and renal clearance and over estimation of intestinal first pass for lorazepam, oxazepam, and zidovudine. The impact of UGT2B15 polymorphisms on the pharmacokinetics of oxazepam and lorazepam was simulated and glucuronide metabolites were also simulated for all four drugs. To increase confidence in predicting extra-hepatic clearance, improvement of enzyme phenotyping for UGT substrates and more quantitative tissue expression levels of UGT enzymes are both needed. Prediction of glucuronide disposition is also challenging when active transport processes play a major role.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AUC:

Area under the plasma concentration-time curve

CLint :

Intrinsic clearance

CNT:

Concentrative nucleoside transporter

C max :

Peak concentration

CYP:

Cytochrome P450

ENT:

Equilibrative nucleoside transporter

F :

Bioavailability

F a :

Fraction of the drug entering the enterocytes

FDp :

Fraction of the drug reaching the portal vein

F G :

Fraction of the drug that escapes gut metabolism

F H :

Fraction of the drug that escapes hepatic first-pass metabolism

f m :

Fraction metabolized

f u,ent :

Fraction unbound in enterocytes

f u,inc :

Fraction unbound in incubation

f u,p :

Fraction unbound in plasma

GFR:

Glomerular filtration rate

ISEF:

Inter-system extrapolation factor

IV:

Intravenous

K p :

Tissue:plasma partition coefficients

NCA:

Non-compartmental analysis

NDAs:

New drug applications

OAT:

Organic anion transporter

OCT:

Organic cation transporter

PBPK modeling:

Physiologically based pharmacokinetic modeling

PK:

Pharmacokinetics

PO:

Oral administration

PSA:

Parameter sensitivity analysis

RAF:

Relative activity factor

SCHH:

Sandwich-cultured hepatocytes

T max :

Time of peak concentration

UGT:

UDP-glucuronosyltransferases

rhUGT:

Recombinant human UGT

V SS :

Volume of distribution at steady state

References

  1. 1.

    Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol. 2013;2:e63.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Grimstein M, Yang Y, Zhang X, Grillo J, Huang SM, Zineh I, et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration’s Office of Clinical Pharmacology. J Pharm Sci. 2019;108(1):21–5.

    CAS  PubMed  Google Scholar 

  3. 3.

    Jones HM, Chen Y, Gibson C, Heimbach T, Parrott N, Peters SA, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.

    CAS  PubMed  Google Scholar 

  4. 4.

    Ohno S, Nakajin S. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos. 2009;37(1):32–40.

    CAS  PubMed  Google Scholar 

  5. 5.

    Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32.

    CAS  PubMed  Google Scholar 

  6. 6.

    Argikar UA, Potter PM, Hutzler JM, Marathe PH. Challenges and opportunities with non-CYP enzymes aldehyde oxidase, carboxylesterase, and UDP-glucuronosyltransferase: focus on reaction phenotyping and prediction of human clearance. AAPS J. 2016;18(6):1391–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cerny MA. Prevalence of non–cytochrome P450–mediated metabolism in Food and Drug Administration–approved oral and intravenous drugs: 2006–2015. Drug Metab Disposition. 2016;44(8):1246–52.

    CAS  Google Scholar 

  8. 8.

    Lv X, Zhang J-B, Hou J, Dou T-Y, Ge G-B, Hu W-Z, et al. Chemical probes for human UDP-glucuronosyltransferases: a comprehensive review. Biotechnol J. 2019;14(1):1800002.

    Google Scholar 

  9. 9.

    Zientek MA, Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos. 2015;43(1):163–81.

    PubMed  Google Scholar 

  10. 10.

    Achour B, Rostami-Hodjegan A, Barber J. Protein expression of various hepatic uridine 5′-diphosphate glucuronosyltransferase (UGT) enzymes and their inter-correlations: a meta-analysis. Biopharm Drug Dispos. 2014;35(6):353–61.

    CAS  PubMed  Google Scholar 

  11. 11.

    Margaillan G, Rouleau M, Fallon JK, Caron P, Villeneuve L, Turcotte V, et al. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: a comparison of normal and tumoral kidney tissues. Drug Metab Disposition. 2015;43(4):611–9.

    CAS  Google Scholar 

  12. 12.

    Couto N, Al-Majdoub Z, Gibson S, Davies P, Achour B, Harwood MD, et al. Quantitative proteomics of clinically relevant drug-metabolizing enzymes and drug transporters and their inter-correlations in the human small intestine. Drug Metab Disposition. 2020. https://doi.org/10.1124/dmd.119.089656.

  13. 13.

    Zhuang X, Lu C. PBPK modeling and simulation in drug research and development. Acta Pharm Sin B. 2016;6(5):430–40.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Court MH, Duan SX, Guillemette C, Journault K, Krishnaswamy S, Von Moltke LL, et al. Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos. 2002;30(11):1257–65.

    CAS  PubMed  Google Scholar 

  15. 15.

    Uchaipichat V, Suthisisang C, Miners JO. The glucuronidation of R- and S-lorazepam: human liver microsomal kinetics, UDP-glucuronosyltransferase enzyme selectivity, and inhibition by drugs. Drug Metab Disposition. 2013;41(6):1273–84.

    CAS  Google Scholar 

  16. 16.

    Barbier O, Turgeon D, Girard C, Green MD, Tephly TR, Hum DW, et al. 3′-azido-3′-deoxythimidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). Drug Metab Dispos. 2000;28(5):497–502.

    CAS  PubMed  Google Scholar 

  17. 17.

    Di Marco A, D’Antoni M, Attaccalite S, Carotenuto P, Laufer R. Determination of drug glucuronidation and UDP-glucuronosyltransferase selectivity using a 96-well radiometric assay. Drug Metab Dispos. 2005;33(6):812–9.

    PubMed  Google Scholar 

  18. 18.

    Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol. 2007;26:120.

    PubMed  Google Scholar 

  19. 19.

    Da-Silva F, Boulenc X, Vermet H, Compigne P, Gerbal-Chaloin S, Daujat-Chavanieu M, et al. Improving prediction of metabolic clearance using quantitative extrapolation of results obtained from human hepatic micropatterned cocultures model and by considering the impact of albumin binding. J Pharm Sci. 2018;107(7):1957–72.

    CAS  PubMed  Google Scholar 

  20. 20.

    Lin C, Shi J, Moore A, Khetani SR. Prediction of drug clearance and drug-drug interactions in microscale cultures of human hepatocytes. Drug Metab Dispos. 2016;44(1):127–36.

    CAS  PubMed  Google Scholar 

  21. 21.

    Wood FL, Houston JB, Hallifax D. Clearance prediction methodology needs fundamental improvement: trends common to rat and human hepatocytes/microsomes and implications for experimental methodology. Drug Metab Dispos. 2017;45(11):1178–88.

    CAS  PubMed  Google Scholar 

  22. 22.

    Greenblatt DJ. Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet. 1981;6(2):89–105.

    CAS  PubMed  Google Scholar 

  23. 23.

    Rzasa Lynn R, Galinkin JL. Naloxone dosage for opioid reversal: current evidence and clinical implications. Ther Adv Drug Saf. 2018;9(1):63–88.

    CAS  PubMed  Google Scholar 

  24. 24.

    Langtry HD, Campoli-Richards DM. Zidovudine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs. 1989;37(4):408–50.

    CAS  PubMed  Google Scholar 

  25. 25.

    Popovic GV, Sladic DM, Stefanovic VM, Pfendt LB. Study on protolytic equilibria of lorazepam and oxazepam by UV and NMR spectroscopy. J Pharm Biomed Anal. 2003;31(4):693–9.

    CAS  PubMed  Google Scholar 

  26. 26.

    Wermeling DP. A response to the opioid overdose epidemic: naloxone nasal spray. Drug Delivery and Translational Research. 2013;3(1):63–74.

    CAS  PubMed  Google Scholar 

  27. 27.

    Gennaro AR. Remington: the science and practice of pharmacy. 19th Edition ed: Mack Publishing, Easton 1995.

  28. 28.

    Pyka A, Babuska M, Zachariasz M. A comparison of theoretical methods of calculation of partition coefficients for selected drugs. Acta Pol Pharm. 2006;63(3):159–67.

    PubMed  Google Scholar 

  29. 29.

    D.B. Turner, D Pade, M. Jamei, S. Neuhof. A mechanistic physiologically-based pharmacokinetic (PBPK) model to predict the pharmacokinetics of R/S-oxazepam after oral dosing.

  30. 30.

    Villard A-L, Coussot G, Lefebvre I, Augustijns P, Aubertin A-M, Gosselin G, et al. Phenyl phosphotriester derivatives of AZT: variations upon the SATE moiety. Biorg Med Chem. 2008;16(15):7321–9.

    CAS  Google Scholar 

  31. 31.

    Hadžiabdić J, Elezovic A, Imamović B, Becic E. The improvement of lorazepam solubility by cosolvency, micellization and complexation. Jordan J Pharm Sci. 2012;5(2):141–54

  32. 32.

    Nakano M, Kohri N, Arakawa Y, Arita T. The permeation of benzodiazepines through synthetic membranes. Chem Pharm Bull (Tokyo). 1979;27(3):573–7.

    CAS  Google Scholar 

  33. 33.

    Dezani AB, Pereira TM, Caffaro AM, Reis JM, Serra CHR. Equilibrium solubility versus intrinsic dissolution: characterization of lamivudine, stavudine and zidovudine for BCS classification. Brazilian Journal of Pharmaceutical Sciences. 2013;49:853–63.

    CAS  Google Scholar 

  34. 34.

    Li C, Liu T, Cui X, Uss AS, Cheng KC. Development of in vitro pharmacokinetic screens using Caco-2, human hepatocyte, and Caco-2/human hepatocyte hybrid systems for the prediction of oral bioavailability in humans. J Biomol Screen. 2007;12(8):1084–91.

    CAS  PubMed  Google Scholar 

  35. 35.

    Dezani AB, Pereira TM, Caffaro AM, Reis JM, Serra CH. Determination of lamivudine and zidovudine permeability using a different ex vivo method in Franz cells. J Pharmacol Toxicol Methods. 2013;67(3):194–202.

    CAS  PubMed  Google Scholar 

  36. 36.

    Brown HS, Griffin M, Houston JB. Evaluation of cryopreserved human hepatocytes as an alternative in vitro system to microsomes for the prediction of metabolic clearance. Drug Metab Dispos. 2007;35(2):293–301.

    CAS  PubMed  Google Scholar 

  37. 37.

    Mistry M, Houston JB. Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab Dispos. 1987;15(5):710–7.

    CAS  PubMed  Google Scholar 

  38. 38.

    Luzier A, Morse GD. Intravascular distribution of zidovudine: role of plasma proteins and whole blood components. Antivir Res. 1993;21(3):267–80.

    CAS  PubMed  Google Scholar 

  39. 39.

    Greenblatt DJ, Schillings RT, Kyriakopoulos AA, Shader RI, Sisenwine SF, Knowles JA, et al. Clinical pharmacokinetics of lorazepam. I. Absorption and disposition of oral 14C-lorazepam. Clin Pharmacol Ther. 1976;20(3):329–41.

    CAS  PubMed  Google Scholar 

  40. 40.

    Sonne J, Loft S, Døssing M, Vollmer-Larsen A, Olesen KL, Victor M, et al. Bioavailability and pharmacokinetics of oxazepam. Eur J Clin Pharmacol. 1988;35(4):385–9.

    CAS  PubMed  Google Scholar 

  41. 41.

    Veal GJ, Back DJ. Metabolism of zidovudine. Gen Pharmacol. 1995;26(7):1469–75.

    CAS  PubMed  Google Scholar 

  42. 42.

    Suzuki T, Ohmuro A, Miyata M, Furuishi T, Hidaka S, Kugawa F, et al. Involvement of an influx transporter in the blood-brain barrier transport of naloxone. Biopharm Drug Dispos. 2010;31(4):243–52.

    CAS  PubMed  Google Scholar 

  43. 43.

    Errasti-Murugarren E, Pastor-Anglada M. Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics. 2010;11(6):809–41.

    CAS  PubMed  Google Scholar 

  44. 44.

    Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300(3):918–24.

    CAS  PubMed  Google Scholar 

  45. 45.

    Patel M, Tang BK, Grant DM, Kalow W. Interindividual variability in the glucuronidation of (S) oxazepam contrasted with that of (R) oxazepam. Pharmacogenetics. 1995;5(5):287–97.

    CAS  PubMed  Google Scholar 

  46. 46.

    Manevski N, Moreolo PS, Yli-Kauhaluoma J, Finel M. Bovine serum albumin decreases km values of human UDP-glucuronosyltransferases 1A9 and 2B7 and increases Vmax values of UGT1A9. Drug Metab Disposition. 2011;39(11):2117–29.

    CAS  Google Scholar 

  47. 47.

    Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, et al. Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. Anal Chem. 2012;84(1):98–105.

    CAS  PubMed  Google Scholar 

  48. 48.

    Nishimura M, Ejiri Y, Kishimoto S, Suzuki S, Satoh T, Horie T, et al. Expression levels of drug-metabolizing enzyme, transporter, and nuclear receptor mRNAs in a novel three-dimensional culture system for human hepatocytes using micro-space plates. Drug Metab Pharmacokinet. 2011;26(2):137–44.

    CAS  PubMed  Google Scholar 

  49. 49.

    Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, et al. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos. 2012;40(1):83–92.

    CAS  PubMed  Google Scholar 

  50. 50.

    Heikkinen AT, Baneyx G, Caruso A, Parrott N. Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates - an evaluation and case study using GastroPlus. Eur J Pharm Sci. 2012;47(2):375–86.

    CAS  PubMed  Google Scholar 

  51. 51.

    Abduljalil K, Cain T, Humphries H, Rostami-Hodjegan A. Deciding on success criteria for predictability of pharmacokinetic parameters from in vitro studies: an analysis based on in vivo observations. Drug Metab Disposition. 2014;42(9):1478–84.

    Google Scholar 

  52. 52.

    Klecker RW Jr, Collins JM, Yarchoan R, Thomas R, Jenkins JF, Broder S, et al. Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythymidine: a novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin Pharmacol Ther. 1987;41(4):407–12.

    PubMed  Google Scholar 

  53. 53.

    Chatton JY, Munafo A, Chave JP, Steinhauslin F, Roch-Ramel F, Glauser MP, et al. Trimethoprim, alone or in combination with sulphamethoxazole, decreases the renal excretion of zidovudine and its glucuronide. Br J Clin Pharmacol. 1992;34(6):551–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ladumor MK, Thakur A, Sharma S, Rachapally A, Mishra S, Bobe P, et al. A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modelling and simulation. Sci Rep. 2019;9(1):9709.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Greenblatt DJ, Comer WH, Elliott HW, Shader RI, Knowles JA, Ruelius HW. Clinical pharmacokinetics of lorazepam. III. Intravenous injection. Preliminary results. J Clin Pharmacol. 1977;17(8–9):490–4.

    CAS  PubMed  Google Scholar 

  56. 56.

    Greenblatt DJ, Murray TG, Audet PR, Locniskar A, Koepke HH, Walker BR. Multiple-dose kinetics and dialyzability of oxazepam in renal insufficiency. Nephron. 1983;34(4):234–8.

    CAS  PubMed  Google Scholar 

  57. 57.

    Patwardhan RV, Yarborough GW, Desmond PV, Johnson RF, Schenker S, Speeg KV Jr. Cimetidine spares the glucuronidation of lorazepam and oxazepam. Gastroenterology. 1980;79(5 Pt 1):912–6.

    CAS  PubMed  Google Scholar 

  58. 58.

    Smink BE, Hofman BJ, Dijkhuizen A, Lusthof KJ, de Gier JJ, Egberts AC, et al. The concentration of oxazepam and oxazepam glucuronide in oral fluid, blood and serum after controlled administration of 15 and 30 mg oxazepam. Br J Clin Pharmacol. 2008;66(4):556–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    van Hecken AM, Tjandramaga TB, Verbesselt R, de Schepper PJ. The influence of diflunisal on the pharmacokinetics of oxazepam. Br J Clin Pharmacol. 1985;20(3):225–34.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Dong J, Liu S, Zhang H, Hua Q, Zhao X, Miao L. Determination of naloxone-3-glucuronide in human plasma and urine by HILIC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;942–943:83–7.

    PubMed  Google Scholar 

  61. 61.

    Kongstad KT, Papathanasiou T, Springborg AD, Lund TM, Werner MU, Staerk D. Simultaneous quantification of high-dose naloxone and naloxone-3-beta-d-glucuronide in human plasma by UHPLC-MS/MS. Bioanalysis. 2019;11:165–73.

    CAS  Google Scholar 

  62. 62.

    Lertora JJ, Rege AB, Greenspan DL, Akula S, George WJ, Hyslop NE Jr, et al. Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther. 1994;56(3):272–8.

    CAS  PubMed  Google Scholar 

  63. 63.

    He X, Hesse LM, Hazarika S, Masse G, Harmatz JS, Greenblatt DJ, et al. Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion. Br J Clin Pharmacol. 2009;68(5):721–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Chung JY, Cho JY, Yu KS, Kim JR, Jung HR, Lim KS, et al. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin Pharmacol Ther. 2005;77(6):486–94.

    CAS  PubMed  Google Scholar 

  65. 65.

    Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333(18):1171–5.

    CAS  PubMed  Google Scholar 

  66. 66.

    Caillier B, Lépine J, Tojcic J, Ménard V, Perusse L, Bélanger A, et al. A pharmacogenomics study of the human estrogen glucuronosyltransferase UGT1A3. Pharmacogenet Genomics. 2007;17(7):481–95.

    CAS  PubMed  Google Scholar 

  67. 67.

    Lévesque E, Delage R, Benoit-Biancamano MO, Caron P, Bernard O, Couture F, et al. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther. 2007;81(3):392–400.

    PubMed  Google Scholar 

  68. 68.

    Yuan L-M, Gao Z-Z, Sun H-Y, Qian S-N, Xiao Y-S, Sun L-L, et al. Inter-isoform hetero-dimerization of human UDP-glucuronosyltransferases (UGTs) 1A1, 1A9, and 2B7 and impacts on glucuronidation activity. Sci Rep. 2016;6:34450.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Pastor-Anglada M, Pérez-Torras S. Emerging roles of nucleoside transporters. Front Pharmacol. 2018;9:606.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Docci L KF, Ekiciler A, Molitor B, Umehara K, Walter I, Krähenbühl S, Parrott NJ, Fowler S. In vitro to in vivo extrapolation of metabolic clearance for UGT substrates using short-term suspension and long-term co-cultured human hepatocytes. Accepted for publication in AAPSJ 2020.

  71. 71.

    Horiuchi K, Ohnishi S, Matsuzaki T, Funaki S, Watanabe A, Mizutare T, et al. Improved human pharmacokinetic prediction of hepatically metabolized drugs with species-specific systemic clearance. J Pharm Sci. 2018;107(5):1443–53.

    CAS  PubMed  Google Scholar 

  72. 72.

    Kim CH, An H, Kim SH, Shin D. Pharmacokinetic and pharmacodynamic interaction between ezetimibe and rosuvastatin in healthy male subjects. Drug Des Devel Ther. 2017;11:3461–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15(2):455–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Ye M, Nagar S, Korzekwa K. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding. Biopharm Drug Dispos. 2016;37(3):123–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Jiunn HL, Bradley KW. Complexities of glucuronidation affecting in vitro-in vivo extrapolation. Curr Drug Metab. 2002;3(6):623–46.

    Google Scholar 

  76. 76.

    Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Disposition. 2004;32(11):1201–8.

    CAS  Google Scholar 

  77. 77.

    Morris RG, Black AB, Lam E, Westley IS. Clinical study of lamotrigine and valproic acid in patients with epilepsy: using a drug interaction to advantage? Ther Drug Monit. 2000;22(6).

  78. 78.

    Naesens M, Kuypers DRJ, Streit F, Armstrong VW, Oellerich M, Verbeke K, et al. Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: implications for drug exposure in renal allograft recipients. Clin Pharmacol Ther. 2006;80(5):509–21.

    CAS  PubMed  Google Scholar 

  79. 79.

    Oda S, Fujiwara R, Kutsuno Y, Fukami T, Itoh T, Yokoi T, et al. Targeted screen for human UDP-glucuronosyltransferases inhibitors and the evaluation of potential drug-drug interactions with zafirlukast. Drug Metab Disposition. 2015;43(6):812–8.

    CAS  Google Scholar 

  80. 80.

    Umehara KI, Huth F, Gu H, Schiller H, Heimbach T, He H. Estimation of fractions metabolized by hepatic CYP enzymes using a concept of inter-system extrapolation factors (ISEFs) - a comparison with the chemical inhibition method. Drug Metab Pers Ther. 2017;32(4):191–200.

    CAS  PubMed  Google Scholar 

  81. 81.

    Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC, Miners JO. Scaling factors for the in vitro-in vivo extrapolation (IV-IVE) of renal drug and xenobiotic glucuronidation clearance. Br J Clin Pharmacol. 2016;81(6):1153–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Sato Y, Nagata M, Tetsuka K, Tamura K, Miyashita A, Kawamura A, et al. Optimized methods for targeted peptide-based quantification of human uridine 5′-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos. 2014;42(5):885–9.

    PubMed  Google Scholar 

  83. 83.

    Zhang H, Wolford C, Basit A, Li AP, Fan PW, Takahashi RH, et al. Regional proteomic quantification of clinically relevant non-cytochrome P450 enzymes along the human small intestine. Drug Metab Disposition. 2020. https://doi.org/10.1124/dmd.120.090738.

  84. 84.

    Mizuma T. Intestinal glucuronidation metabolism may have a greater impact on oral bioavailability than hepatic glucuronidation metabolism in humans: a study with raloxifene, substrate for UGT1A1, 1A8, 1A9, and 1A10. Int J Pharm. 2009;378(1):140–1.

    CAS  PubMed  Google Scholar 

  85. 85.

    Smith K, Hopp M, Mundin G, Bond S, Bailey P, Woodward J, et al. Low absolute bioavailability of oral naloxone in healthy subjects. Int J Clin Pharmacol Ther. 2012;50(5):360–7.

    CAS  PubMed  Google Scholar 

  86. 86.

    Miyauchi E, Tachikawa M, Decleves X, Uchida Y, Bouillot JL, Poitou C, et al. Quantitative atlas of cytochrome P450, UDP-glucuronosyltransferase, and transporter proteins in jejunum of morbidly obese subjects. Mol Pharm. 2016;13(8):2631–40.

    CAS  PubMed  Google Scholar 

  87. 87.

    Ge S, Wei Y, Yin T, Xu B, Gao S, Hu M. Transport-glucuronidation classification system and PBPK modeling: new approach to predict the impact of transporters on disposition of glucuronides. Mol Pharm. 2017;14(9):2884–98.

    CAS  PubMed  Google Scholar 

  88. 88.

    Kimoto E, Li R, Scialis RJ, Lai Y, Varma MV. Hepatic disposition of gemfibrozil and its major metabolite gemfibrozil 1-O-beta-glucuronide. Mol Pharm. 2015;12(11):3943–52.

    CAS  PubMed  Google Scholar 

  89. 89.

    Nguyen HQ, Callegari E, Obach RS. The use of in vitro data and physiologically-based pharmacokinetic modeling to predict drug metabolite exposure: desipramine exposure in cytochrome P4502D6 extensive and poor metabolizers following administration of imipramine. Drug Metab Dispos. 2016;44(10):1569–78.

    CAS  PubMed  Google Scholar 

  90. 90.

    Obach RS, Lin J, Kimoto E, Duvvuri S, Nicholas T, Kadar EP, et al. Estimation of circulating drug metabolite exposure in human using in vitro data and physiologically based pharmacokinetic modeling: example of a high metabolite/parent drug ratio. Drug Metab Dispos. 2018;46(2):89–99.

    CAS  PubMed  Google Scholar 

  91. 91.

    van Dorp EL, Morariu A, Dahan A. Morphine-6-glucuronide: potency and safety compared with morphine. Expert Opin Pharmacother. 2008;9(11):1955–61.

    PubMed  Google Scholar 

  92. 92.

    Pumford NR, Myers TG, Davila JC, Highet RJ, Pohl LR. Immunochemical detection of liver protein adducts of the nonsteroidal antiinflammatory drug diclofenac. Chem Res Toxicol. 1993;6(2):147–50.

    CAS  PubMed  Google Scholar 

  93. 93.

    Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet. 2002;41(10):751–90.

    CAS  PubMed  Google Scholar 

  94. 94.

    Wu B. Use of physiologically based pharmacokinetic models to evaluate the impact of intestinal glucuronide hydrolysis on the pharmacokinetics of aglycone. J Pharm Sci. 2012;101(3):1281–301.

    CAS  PubMed  Google Scholar 

  95. 95.

    Li R, Ghosh A, Maurer TS, Kimoto E, Barton HA. Physiologically based pharmacokinetic prediction of telmisartan in human. Drug Metab Disposition. 2014;42(10):1646–55.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neil Parrott.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 6138 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Docci, L., Umehara, K., Krähenbühl, S. et al. Construction and Verification of Physiologically Based Pharmacokinetic Models for Four Drugs Majorly Cleared by Glucuronidation: Lorazepam, Oxazepam, Naloxone, and Zidovudine. AAPS J 22, 128 (2020). https://doi.org/10.1208/s12248-020-00513-5

Download citation

KEY WORDS

  • glucuronidation
  • in vitro to in vivo extrapolation
  • intestinal metabolism
  • physiologically based pharmacokinetics
  • renal metabolism